Hyperspectral Super-Resolution with Spectral Unmixing Constraints

被引:33
作者
Lanaras, Charis [1 ]
Baltsavias, Emmanuel [1 ]
Schindler, Konrad [1 ]
机构
[1] Swiss Fed Inst Technol, Photogrammetry & Remote Sensing, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
hyperspectral imaging; super resolution; spectral unmixing; relative spatial response; relative spectral response; data fusion; IMAGE FUSION;
D O I
10.3390/rs9111196
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral sensors capture a portion of the visible and near-infrared spectrum with many narrow spectral bands. This makes it possible to better discriminate objects based on their reflectance spectra and to derive more detailed object properties. For technical reasons, the high spectral resolution comes at the cost of lower spatial resolution. To mitigate that problem, one may combine such images with conventional multispectral images of higher spatial, but lower spectral resolution. The process of fusing the two types of imagery into a product with both high spatial and spectral resolution is called hyperspectral super-resolution. We propose a method that performs hyperspectral super-resolution by jointly unmixing the two input images into pure reflectance spectra of the observed materials, along with the associated mixing coefficients. Joint super-resolution and unmixing is solved by a coupled matrix factorization, taking into account several useful physical constraints. The formulation also includes adaptive spatial regularization to exploit local geometric information from the multispectral image. Moreover, we estimate the relative spatial and spectral responses of the two sensors from the data. That information is required for the super-resolution, but often at most approximately known for real-world images. In experiments with five public datasets, we show that the proposed approach delivers up to 15% improved hyperspectral super-resolution.
引用
收藏
页数:24
相关论文
共 38 条
[1]  
AKHTAR N, 2014, PROC EUR CONF COMP, V8695, P63
[2]  
Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[5]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[6]   Proximal alternating linearized minimization for nonconvex and nonsmooth problems [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :459-494
[7]  
Boyd S, 2004, CONVEX OPTIMIZATION
[8]   Noise Reduction in Hyperspectral Images Through Spectral Unmixing [J].
Cerra, Daniele ;
Mueller, Rupert ;
Reinartz, Peter .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) :109-113
[9]  
Chakrabarti A, 2011, PROC CVPR IEEE, P193, DOI 10.1109/CVPR.2011.5995660
[10]  
Condat L, 2016, MATH PROGRAM, V158, P575, DOI 10.1007/s10107-015-0946-6