Multicomponent diffusion coefficients from microfluidics using Raman microspectroscopy

被引:34
作者
Peters, Christine [1 ]
Wolff, Ludger [1 ]
Haase, Sandra [1 ,2 ]
Thien, Julia [1 ]
Brands, Thorsten [1 ]
Koss, Hans-Juergen [1 ]
Bardow, Andre [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Shock Wave Lab, D-52056 Aachen, Germany
关键词
MICROCHANNEL; MODEL; DENSITIES; LIQUID; SPECTROSCOPY; GENERATION; MICROSCOPY; DYNAMICS; GRADIENT; HEPTANE;
D O I
10.1039/c7lc00433h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diffusion is slow. Thus, diffusion experiments are intrinsically time-consuming and laborious. Additionally, the experimental effort is multiplied for multicomponent systems as the determination of multicomponent diffusion coefficients typically requires several experiments. To reduce the experimental effort, we present the first microfluidic diffusion measurement method for multicomponent liquid systems. The measurement setup combines a microfluidic chip with Raman microspectroscopy. Excellent agreement between experimental results and literature data is achieved for the binary system cyclohexane + toluene and the ternary system 1-propanol + 1-chlorobutane + heptane. The Fick diffusion coefficients are obtained from fitting a multicomponent convection-diffusion model to the mole fractions measured in experiments. Ternary diffusion coefficients can be obtained from a single experiment; high accuracy is already obtained from two experiments. Advantages of the presented measurement method are thus short measurement times, reduced sample consumption, and less experiments for the determination of a multicomponent diffusion coefficient.
引用
收藏
页码:2768 / 2776
页数:9
相关论文
共 57 条
  • [21] Fourier transform to analyse reaction-diffusion dynamics in a microsystem
    Estevez-Torres, Andre
    Le Saux, Thomas
    Gosse, Charlie
    Lemarchand, Annie
    Bourdoncle, Anne
    Jullien, Ludovic
    [J]. LAB ON A CHIP, 2008, 8 (07) : 1205 - 1209
  • [22] Theoretical analysis of a magnetophoresis-diffusion T-sensor immunoassay
    Forbes, Thomas P.
    Munson, Matthew S.
    Forry, Samuel P.
    [J]. LAB ON A CHIP, 2013, 13 (19) : 3935 - 3944
  • [23] Flow-switching allows independently programmable, extremely stable, high-throughput diffusion-based gradients
    Frank, Tino
    Tay, Savas
    [J]. LAB ON A CHIP, 2013, 13 (07) : 1273 - 1281
  • [24] THE DIAPHRAGM CELL METHOD OF MEASURING DIFFUSION
    GORDON, AR
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1945, 46 (05) : 285 - 308
  • [25] Microfluidic diffusion measurements: The optimal H-cell
    Haeusler, Erik
    Domagalski, Piotr
    Ottens, Marcel
    Bardow, Andre
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 72 : 45 - 50
  • [26] A rapid diffusion immunoassay in a T-sensor
    Hatch, A
    Kamholz, AE
    Hawkins, KR
    Munson, MS
    Schilling, EA
    Weigl, BH
    Yager, P
    [J]. NATURE BIOTECHNOLOGY, 2001, 19 (05) : 461 - 465
  • [27] Optical measurement of transverse molecular diffusion in a microchannel
    Kamholz, AE
    Schilling, EA
    Yager, P
    [J]. BIOPHYSICAL JOURNAL, 2001, 80 (04) : 1967 - 1972
  • [28] KASHAMMER S, 1994, Z PHYS CHEM, V187, P233
  • [29] Densities and viscosities of MTBE plus heptane or octane at p=0.1 MPa from (273.15 to 363.15) K
    Landaverde-Cortes, Diana C.
    Estrada-Baltazar, Alejandro
    Iglesias-Silva, Gustavo A.
    Hall, Kenneth R.
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2007, 52 (04) : 1226 - 1232
  • [30] Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents
    Lefortier, Stephanie G. R.
    Hamersma, Peter J.
    Bardow, Andre
    Kreutzer, Michiel T.
    [J]. LAB ON A CHIP, 2012, 12 (18) : 3387 - 3391