Multicomponent diffusion coefficients from microfluidics using Raman microspectroscopy

被引:34
作者
Peters, Christine [1 ]
Wolff, Ludger [1 ]
Haase, Sandra [1 ,2 ]
Thien, Julia [1 ]
Brands, Thorsten [1 ]
Koss, Hans-Juergen [1 ]
Bardow, Andre [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Shock Wave Lab, D-52056 Aachen, Germany
关键词
MICROCHANNEL; MODEL; DENSITIES; LIQUID; SPECTROSCOPY; GENERATION; MICROSCOPY; DYNAMICS; GRADIENT; HEPTANE;
D O I
10.1039/c7lc00433h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diffusion is slow. Thus, diffusion experiments are intrinsically time-consuming and laborious. Additionally, the experimental effort is multiplied for multicomponent systems as the determination of multicomponent diffusion coefficients typically requires several experiments. To reduce the experimental effort, we present the first microfluidic diffusion measurement method for multicomponent liquid systems. The measurement setup combines a microfluidic chip with Raman microspectroscopy. Excellent agreement between experimental results and literature data is achieved for the binary system cyclohexane + toluene and the ternary system 1-propanol + 1-chlorobutane + heptane. The Fick diffusion coefficients are obtained from fitting a multicomponent convection-diffusion model to the mole fractions measured in experiments. Ternary diffusion coefficients can be obtained from a single experiment; high accuracy is already obtained from two experiments. Advantages of the presented measurement method are thus short measurement times, reduced sample consumption, and less experiments for the determination of a multicomponent diffusion coefficient.
引用
收藏
页码:2768 / 2776
页数:9
相关论文
共 57 条
  • [1] Sandwich mixer-reactor: influence of the diffusion coefficient and flow rate ratios
    Abonnenc, Melanie
    Josserand, Jacques
    Girault, Hubert H.
    [J]. LAB ON A CHIP, 2009, 9 (03) : 440 - 448
  • [2] Indirect spectral hard modeling for the analysis of reactive and interacting mixtures
    Alsmeyer, F
    Koss, HJ
    Marquardt, W
    [J]. APPLIED SPECTROSCOPY, 2004, 58 (08) : 975 - 985
  • [3] The microfluidic palette: A diffusive gradient generator with spatio-temporal control
    Atencia, Javier
    Morrow, Jayne
    Locascio, Laurie E.
    [J]. LAB ON A CHIP, 2009, 9 (18) : 2707 - 2714
  • [4] Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients
    Baker, Brendon M.
    Trappmann, Britta
    Stapleton, Sarah C.
    Toro, Esteban
    Chen, Christopher S.
    [J]. LAB ON A CHIP, 2013, 13 (16) : 3246 - 3252
  • [5] Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy
    Bardow, A
    Göke, V
    Koss, HJ
    Lucas, K
    Marquardt, W
    [J]. FLUID PHASE EQUILIBRIA, 2005, 228 : 357 - 366
  • [6] Ternary diffusivities by model-based analysis of Raman spectroscopy measurements
    Bardow, Andre
    Goeke, Volker
    Koss, Hans-Juergen
    Marquardt, Wolfgang
    [J]. AICHE JOURNAL, 2006, 52 (12) : 4004 - 4015
  • [7] SATURATED LIQUID DENSITIES OF BENZENE, CYCLOHEXANE, AND HEXANE FROM 298.15-K TO 473.15-K
    BEG, SA
    TUKUR, NM
    ALHARBI, DK
    HAMAD, EZ
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1993, 38 (03) : 461 - 464
  • [8] Gradient generation platforms: new directions for an established microfluidic technology
    Berthier, E.
    Beebe, D. J.
    [J]. LAB ON A CHIP, 2014, 14 (17) : 3241 - 3247
  • [9] Model-free calibration of Raman measurements of reactive systems: Application to monoethanolamine/water/CO2
    Beumers, Peter
    Brands, Thorsten
    Koss, Hans-Jurgen
    Bardow, Andre
    [J]. FLUID PHASE EQUILIBRIA, 2016, 424 : 52 - 57
  • [10] Bird R B., 2002, Transportphenomena