Hydrogen bonding stabilizes globular proteins

被引:257
作者
Myers, JK
Pace, CN
机构
[1] TEXAS A&M UNIV,DEPT BIOCHEM MED,COLLEGE STN,TX 77843
[2] TEXAS A&M UNIV,DEPT GENET,COLLEGE STN,TX 77843
[3] TEXAS A&M UNIV,DEPT BIOCHEM,COLLEGE STN,TX 77843
[4] TEXAS A&M UNIV,DEPT BIOPHYS,COLLEGE STN,TX 77843
[5] TEXAS A&M UNIV,CTR MACROMOL DESIGN,COLLEGE STN,TX 77843
关键词
D O I
10.1016/S0006-3495(96)79401-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
It is clear that intramolecular hydrogen bonds are essential to the structure and stability of globular proteins. It is not clear, however, whether they make a net favorable contribution to this stability. Experimental and theoretical studies are at odds over this important question. Measurements of the change in conformational stability, Delta(Delta G), for the mutation of a hydrogen bonded residue to one incapable of hydrogen bonding suggest a stabilization of 1.0 kcal/mol per hydrogen bond. If the Delta(Delta G) values are corrected for differences in side-chain hydrophobicity and conformational entropy, then the estimated stabilization becomes 2.2 kcal/mol per hydrogen bond. These and other experimental studies discussed here are consistent and compelling: hydrogen bonding stabilizes globular proteins.
引用
收藏
页码:2033 / 2039
页数:7
相关论文
共 75 条
[1]   CONTRIBUTIONS OF HYDROGEN-BONDS OF THR-157 TO THE THERMODYNAMIC STABILITY OF PHAGE-T4 LYSOZYME [J].
ALBER, T ;
SUN, DP ;
WILSON, K ;
WOZNIAK, JA ;
COOK, SP ;
MATTHEWS, BW .
NATURE, 1987, 330 (6143) :41-46
[2]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[3]   BOUND WATER-MOLECULES AND CONFORMATIONAL STABILIZATION HELP MEDIATE AN ANTIGEN-ANTIBODY ASSOCIATION [J].
BHAT, TN ;
BENTLEY, GA ;
BOULOT, G ;
GREENE, MI ;
TELLO, D ;
DALLACQUA, W ;
SOUCHON, H ;
SCHWARZ, FP ;
MARIUZZA, RA ;
POLJAK, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (03) :1089-1093
[4]   ENERGETIC COST AND STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA-]SER AND VAL-]THR SUBSTITUTIONS IN T4 LYSOZYME [J].
BLABER, M ;
LINDSTROM, JD ;
GASSNER, N ;
XU, J ;
DIRK, WH ;
MATTHEWS, BW .
BIOCHEMISTRY, 1993, 32 (42) :11363-11373
[5]   SIDE CHAIN-BACKBONE HYDROGEN-BONDING CONTRIBUTES TO HELIX STABILITY IN PEPTIDES DERIVED FROM AN ALPHA-HELICAL REGION OF CARBOXYPEPTIDASE-A [J].
BRUCH, MD ;
DHINGRA, MM ;
GIERASCH, LM .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 10 (02) :130-139
[6]   Structural and energetic responses to cavity-creating mutations in hydrophobic cores: Observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities [J].
Buckle, AM ;
Cramer, P ;
Fersht, AR .
BIOCHEMISTRY, 1996, 35 (14) :4298-4305
[7]   ENERGETIC CONTRIBUTION OF SIDE-CHAIN HYDROGEN-BONDING TO THE STABILITY OF STAPHYLOCOCCAL NUCLEASE [J].
BYRNE, MP ;
MANUEL, RL ;
LOWE, LG ;
STITES, WE .
BIOCHEMISTRY, 1995, 34 (42) :13949-13960
[8]   ENTHALPY OF HYDROGEN-BOND FORMATION IN A PROTEIN-LIGAND BINDING REACTION [J].
CONNELLY, PR ;
ALDAPE, RA ;
BRUZZESE, FJ ;
CHAMBERS, SP ;
FITZGIBBON, MJ ;
FLEMING, MA ;
ITOH, S ;
LIVINGSTON, DJ ;
NAVIA, MA ;
THOMSON, JA ;
WILSON, KP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1964-1968
[9]   Sequence space, folding and protein design [J].
Cordes, MHJ ;
Davidson, AR ;
Sauer, RT .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (01) :3-10
[10]   Modeling unfolded states of peptides and proteins [J].
Creamer, TP ;
Srinivasan, R ;
Rose, GD .
BIOCHEMISTRY, 1995, 34 (50) :16245-16250