Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo

被引:53
|
作者
Santana, Juan A. [1 ]
Krogel, Jaron T. [1 ]
Kim, Jeongnim [1 ]
Kent, Paul R. C. [2 ,3 ]
Reboredo, Fernando A. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 16期
关键词
INITIO MOLECULAR-DYNAMICS; OXYGEN VACANCY; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; POINT-DEFECTS; ENERGY; TRANSITION; STATE; PSEUDOPOTENTIALS; SIMULATIONS;
D O I
10.1063/1.4919242
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O-2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Quantum Monte Carlo Study of the Energetics of Small Hydrogenated and Fluoride Lithium Clusters
    Moreira, N. L.
    Brito, B. G. A.
    Teixeira Rabelo, J. N.
    Candido, Ladir
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (17) : 1531 - 1536
  • [32] QUANTUM MONTE-CARLO STUDY OF SURFACE-DIFFUSION
    MATTSSON, TR
    WAHNSTROM, G
    PHYSICAL REVIEW B, 1995, 51 (03): : 1885 - 1896
  • [33] VARIATIONAL AND DIFFUSION MONTE-CARLO TECHNIQUES FOR QUANTUM CLUSTERS
    BARNETT, RN
    WHALEY, KB
    PHYSICAL REVIEW A, 1993, 47 (05): : 4082 - 4098
  • [34] ESTIMATING THE RELATIVISTIC ENERGY BY DIFFUSION QUANTUM MONTE-CARLO
    VRBIK, J
    DEPASQUALE, MF
    ROTHSTEIN, SM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 195 : 190 - PHYS
  • [35] Selective correlation scheme within diffusion quantum Monte Carlo
    Schautz, F
    Flad, HJ
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (17): : 7389 - 7399
  • [36] Diffusion and reptation quantum Monte Carlo study of the NaK molecule
    Segovia, Marc E.
    Ventura, Oscar N.
    MOLECULAR PHYSICS, 2019, 117 (06) : 813 - 822
  • [37] Static response of homogeneous quantum fluids by diffusion Monte Carlo
    Senatore, G
    Moroni, S
    Ceperley, DM
    QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 183 - 212
  • [38] Diffusion quantum Monte Carlo approach to the polaritonic ground state
    Weight, Braden M.
    Tretiak, Sergei
    Zhang, Yu
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [39] Understanding quantum tunneling using diffusion Monte Carlo simulations
    Inack, E. M.
    Giudici, G.
    Parolini, T.
    Santoro, G.
    Pilati, S.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [40] Accurate spectroscopic properties by diffusion quantum Monte Carlo calculations
    Carvalho, Cassius M. C.
    Gargano, Ricardo
    Martins, Joao B. L.
    Politi, Jose Roberto S.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 243