Canonical forms for systems of two second-order ordinary differential equations

被引:23
作者
Soh, CW
Mahomed, FM
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, Johannesburg, South Africa
[2] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, Johannesburg, South Africa
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 13期
关键词
D O I
10.1088/0305-4470/34/13/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain non-similar classes of realizations for real three- and four-dimensional Lie algebras in the space of vector fields in three variables. This is applied to the classification and integration of systems of two second-order ordinary differential equations (ODEs) admitting four-dimensional symmetry Lie algebras. Thus we obtain an analogue of Lie's method of integrating scalar second-order ODEs admitting two-dimensional symmetry Lie algebras for systems of two second-order ODEs. Applications to physical problems are presented.
引用
收藏
页码:2883 / 2911
页数:29
相关论文
共 21 条
[1]   AN INTRODUCTION TO LIE GROUPS AND LIE ALGEBRAS WITH APPLICATIONS [J].
BELINFANTE, JG ;
KOLMAN, B ;
SMITH, HA .
SIAM REVIEW, 1966, 8 (01) :11-+
[2]   AN INTRODUCTION TO LIE GROUPS AND LIE ALGEBRAS WITH APPLICATIONS .2. BASIC METHODS AND RESULTS OF REPRESENTATION THEORY [J].
BELINFANTE, JG ;
KOLMAN, B ;
SMITH, HA .
SIAM REVIEW, 1968, 10 (02) :160-+
[3]   Symmetries of Hamiltonian systems with two degrees of freedom [J].
Damianou, PA ;
Sophocleous, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (01) :210-235
[4]   KEPLER 3RD LAW AND THE OSCILLATORS ISOCHRONISM [J].
GORRINGE, VM ;
LEACH, PGL .
AMERICAN JOURNAL OF PHYSICS, 1993, 61 (11) :991-995
[5]  
Ibragimov N. H., 1999, ELEMENTARY LIE GROUP
[6]  
JACOBSON N, 1955, LIE ALGEBRAS
[7]  
LEACH PGL, 1981, J MATH PHYS, V22, P679, DOI 10.1063/1.524976
[8]   GENERALIZED ERMAKOV SYSTEMS [J].
LEACH, PGL .
PHYSICS LETTERS A, 1991, 158 (3-4) :102-106
[9]  
Lie S., 1893, THEORIE TRANSFORMATI
[10]  
Lie S., 1967, DIFFERENTIALGLEICHUN