STOCHASTIC AND VARIATIONAL APPROACH TO THE LAX-FRIEDRICHS SCHEME

被引:0
作者
Soga, Kohei [1 ,2 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Tokyo 1698555, Japan
[2] CNRS ENS Lyon, UMPA UMR 5669, F-69364 Lyon 7, France
关键词
Lax-Friedrichs scheme; scalar conservation law; Hamilton-Jacobi equation; calculus of variations; random walk; law of large numbers; HAMILTON-JACOBI EQUATIONS; AUBRY-MATHER THEORY; CONSERVATION-LAWS; APPROXIMATIONS; CONVERGENCE; SCALAR; LIMIT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws. This is a finite difference version of Fleming's results ('69) that the vanishing viscosity method is characterized by stochastic processes and calculus of variations. We convert the difference equation into that of the Hamilton-Jacobi type and introduce corresponding calculus of variations with random walks. The stability of the scheme is obtained through the calculus of variations. The convergence of approximation is derived from the law of large numbers in hyperbolic scaling limit of random walks. The main advantages due to our approach are the following: Our framework is basically a.e. pointwise convergence with characterization of "a.e.", which yields uniform convergence except "small" neighborhoods of shocks; The stability and convergence proofs are verified for arbitrarily large time interval, which are hard to obtain in the case of flux functions of general types depending on both space and time; the approximation of characteristic curves is available as well as that of PDE-solutions, which is particularly important for applications of the Lax-Friedrichs scheme to the weak KAM theory.
引用
收藏
页码:629 / 651
页数:23
相关论文
共 21 条