A predictive model of geosynchronous magnetopause crossings

被引:25
作者
Dmitriev, A. [1 ,2 ]
Suvorova, A. [2 ]
Chao, J. -K. [1 ]
机构
[1] Natl Cent Univ, Inst Space Sci, Chungli 320, Taiwan
[2] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
关键词
INTERPLANETARY MAGNETIC-FIELD; STEADY-STATE RESPONSE; LOW-LATITUDE STATIONS; RING CURRENT; SUDDEN IMPULSES; PROPAGATION; PRESSURE; PLASMA; SHAPE; SIZE;
D O I
10.1029/2010JA016208
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at a given location for given solar wind pressure P-sw, B-z component of the interplanetary magnetic field (IMF), and geomagnetic conditions characterized by 1 min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 min when geosynchronous satellites of GOES and Los Alamos National Laboratory (LANL) series are located in the magnetosheath (so-called MSh intervals) in 1994-2001. Minimizing of the P-sw required for GMCs and MSh intervals at various locations, B-z, and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of B-z influence for very large southward IMF. The asymmetry is strong for large negative B-z and almost disappears when B-z is positive. We found that the larger the amplitude of negative SYM-H, the lower the solar wind pressure required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm time intensification of the cross-tail current. It is also found that the magnitude of threshold for B-z saturation increases with SYM-H index such that for small negative and positive SYM-H the effect of saturation diminishes. This supports an idea that enhanced thermal pressure of the magnetospheric plasma and ring current particles during magnetic storms results in the saturation of magnetic effect of the IMF B-z at the dayside magnetopause. A noticeable advantage of the model's prediction capabilities in comparison with other magnetopause models makes the model useful for space weather predictions.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Dynamic model of the magnetosphere: Case study for January 9-12, 1997 [J].
Alexeev, II ;
Kalegaev, VV ;
Belenkaya, ES ;
Bobrovnikov, SY ;
Feldstein, YI ;
Gromova, LI .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A11) :25683-25693
[2]  
BOROVSKY JE, 2010, J GEOPHYS RES SPACE, V115
[3]   What determines the reconnection rate at the dayside magnetosphere? [J].
Borovsky, Joseph E. ;
Hesse, Michael ;
Birn, Joachim ;
Kuznetsova, Maria M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A7)
[4]   Penetration electric fields driving main phase Dst [J].
Burke, William J. ;
Gentile, Louise C. ;
Huang, Cheryl Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A7)
[5]   COMPOUND STREAMS, MAGNETIC CLOUDS, AND MAJOR GEOMAGNETIC STORMS [J].
BURLAGA, LF ;
BEHANNON, KW ;
KLEIN, LW .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1987, 92 (A6) :5725-5734
[6]   EMPIRICAL RELATIONSHIP BETWEEN INTERPLANETARY CONDITIONS AND DST [J].
BURTON, RK ;
MCPHERRON, RL ;
RUSSELL, CT .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (31) :4204-4214
[7]   Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind [J].
Collier, MR ;
Slavin, JA ;
Lepping, RP ;
Szabo, A ;
Ogilvie, K .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (14) :2509-2512
[8]   ASYMMETRIC RING CURRENTS AND LOW-LATITUDE DISTURBANCE DAILY VARIATION [J].
CUMMINGS, WD .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (19) :4495-+
[9]   Geosynchronous magnetopause crossings on 29-31 October 2003 [J].
Dmitriev, A ;
Chao, JK ;
Thomsen, M ;
Suvorova, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A8)
[10]  
Dmitriev AV, 2009, HANDBOOK ON SOLAR WIND: EFFECTS, DYNAMICS AND INTERACTIONS, P81