Chromosome evolution in eukaryotes: a multi-kingdom perspective

被引:193
作者
Coghlan, A
Eichler, EE
Oliver, SG
Paterson, AH
Stein, L
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Univ Coll Dublin, Conway Inst, Dublin 4, Ireland
[3] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
[4] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA 98145 USA
[5] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
[6] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA
基金
英国惠康基金; 美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/j.tig.2005.09.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In eukaryotes, chromosomal rearrangements, such as inversions, translocations and duplications, are common and range from part of a gene to hundreds of genes. Lineage-specific patterns are also seen: translocations are rare in dipteran flies, and angiosperm genomes seem prone to polyploidization. In most eukaryotes, there is a strong association between rearrangement breakpoints and repeat sequences. Current data suggest that some repeats promoted rearrangements via non-allelic homologous recombination, for others the association might not be causal but reflects the instability of particular genomic regions. Rearrangement polymorphisms in eukaryotes are correlated with phenotypic differences, so are thought to confer varying fitness in different habitats. Some seem to be under positive selection because they either trap favorable allele combinations together or alter the expression of nearby genes. There is little evidence that chromosomal rearrangements cause speciation, but they probably intensify reproductive isolation between species that have formed by another route.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 134 条
[31]   Plant domestication: a model for studying the selection of linkage [J].
D'Ennequin, ML ;
Toupance, B ;
Robert, T ;
Godelle, B ;
Gouyon, PH .
JOURNAL OF EVOLUTIONARY BIOLOGY, 1999, 12 (06) :1138-1147
[32]  
Darwin Ch., 1959, ORIGIN SPECIES MEANS
[33]   Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome [J].
Davière, JM ;
Langin, T ;
Daboussi, MJ .
FUNGAL GENETICS AND BIOLOGY, 2001, 34 (03) :177-192
[34]  
de Villena FPM, 2001, GENETICS, V159, P1179
[35]   Human chromosome 19 and related regions in mouse: Conservative and lineage-specific evolution [J].
Dehal, P ;
Predki, P ;
Olsen, AS ;
Kobayashi, A ;
Folta, P ;
Lucas, S ;
Land, M ;
Terry, A ;
Zhou, CLE ;
Rash, S ;
Zhang, Q ;
Gordon, L ;
Kim, J ;
Elkin, C ;
Pollard, MJ ;
Richardson, P ;
Rokhsar, D ;
Uberbacher, E ;
Hawkins, T ;
Branscomb, E ;
Stubbs, L .
SCIENCE, 2001, 293 (5527) :104-111
[36]   Exploring redundancy in the yeast genome:: an improved strategy for use of the cre-loxP system [J].
Delneri, D ;
Tomlin, GC ;
Wixon, JL ;
Hutter, A ;
Sefton, M ;
Louis, EJ ;
Oliver, SG .
GENE, 2000, 252 (1-2) :127-135
[37]   Engineering evolution to study speciation in yeasts [J].
Delneri, D ;
Colson, I ;
Grammenoudi, S ;
Roberts, IN ;
Louis, EJ ;
Oliver, SG .
NATURE, 2003, 422 (6927) :68-72
[38]   Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution [J].
Dennehey, BK ;
Gutches, DG ;
McConkey, EH ;
Krauter, KS .
GENOMICS, 2004, 83 (03) :493-501
[39]   Here, there, and everywhere: Kinetochore function on holocentric chromosomes [J].
Dernburg, AF .
JOURNAL OF CELL BIOLOGY, 2001, 153 (06) :F33-F38
[40]   The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome [J].
Dietrich, FS ;
Voegeli, S ;
Brachat, S ;
Lerch, A ;
Gates, K ;
Steiner, S ;
Mohr, C ;
Pöhlmann, R ;
Luedi, P ;
Choi, SD ;
Wing, RA ;
Flavier, A ;
Gaffney, TD ;
Phillippsen, P .
SCIENCE, 2004, 304 (5668) :304-307