Chromosome evolution in eukaryotes: a multi-kingdom perspective

被引:193
作者
Coghlan, A
Eichler, EE
Oliver, SG
Paterson, AH
Stein, L
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Univ Coll Dublin, Conway Inst, Dublin 4, Ireland
[3] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
[4] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA 98145 USA
[5] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
[6] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA
基金
英国惠康基金; 美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/j.tig.2005.09.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In eukaryotes, chromosomal rearrangements, such as inversions, translocations and duplications, are common and range from part of a gene to hundreds of genes. Lineage-specific patterns are also seen: translocations are rare in dipteran flies, and angiosperm genomes seem prone to polyploidization. In most eukaryotes, there is a strong association between rearrangement breakpoints and repeat sequences. Current data suggest that some repeats promoted rearrangements via non-allelic homologous recombination, for others the association might not be causal but reflects the instability of particular genomic regions. Rearrangement polymorphisms in eukaryotes are correlated with phenotypic differences, so are thought to confer varying fitness in different habitats. Some seem to be under positive selection because they either trap favorable allele combinations together or alter the expression of nearby genes. There is little evidence that chromosomal rearrangements cause speciation, but they probably intensify reproductive isolation between species that have formed by another route.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 134 条
[21]   The dynamics of chromosome evolution in birds and mammals [J].
Burt, DW ;
Bruley, C ;
Dunn, IC ;
Jones, CT ;
Ramage, A ;
Law, AS ;
Morrice, DR ;
Paton, IR ;
Smith, J ;
Windsor, D ;
Sazanov, A ;
Fries, R ;
Waddington, D .
NATURE, 1999, 402 (6760) :411-413
[22]   Generation of a widespread Drosophila inversion by a transposable element [J].
Cáceres, M ;
Ranz, JM ;
Barbadilla, A ;
Long, M ;
Ruiz, A .
SCIENCE, 1999, 285 (5426) :415-418
[23]   Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions [J].
Cáceres, M ;
Puig, M ;
Ruiz, A .
GENOME RESEARCH, 2001, 11 (08) :1353-1364
[24]   A DETAILED RFLP MAP OF SORGHUM-BICOLOR X S-PROPINQUUM, SUITABLE FOR HIGH-DENSITY MAPPING, SUGGESTS ANCESTRAL DUPLICATION OF SORGHUM CHROMOSOMES OR CHROMOSOMAL SEGMENTS [J].
CHITTENDEN, LM ;
SCHERTZ, KF ;
LIN, YR ;
WING, RA ;
PATERSON, AH .
THEORETICAL AND APPLIED GENETICS, 1994, 87 (08) :925-933
[25]   Finding functional features in Saccharomyces genomes by phylogenetic footprinting [J].
Cliften, P ;
Sudarsanam, P ;
Desikan, A ;
Fulton, L ;
Fulton, B ;
Majors, J ;
Waterston, R ;
Cohen, BA ;
Johnston, M .
SCIENCE, 2003, 301 (5629) :71-76
[26]   Fourfold faster rate of genome rearrangement in nematodes than in Drosophila [J].
Coghlan, A ;
Wolfe, KH .
GENOME RESEARCH, 2002, 12 (06) :857-867
[27]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[28]   Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae [J].
Colson, I ;
Delneri, D ;
Oliver, SG .
EMBO REPORTS, 2004, 5 (04) :392-398
[29]   A polytene chromosome analysis of the Anopheles gambiae species complex [J].
Coluzzi, M ;
Sabatini, A ;
della Torre, A ;
Di Deco, MA ;
Petrarca, V .
SCIENCE, 2002, 298 (5597) :1415-1418
[30]   CHROMOSOMAL DIFFERENTIATION AND ADAPTATION TO HUMAN ENVIRONMENTS IN THE ANOPHELES-GAMBIAE COMPLEX [J].
COLUZZI, M ;
SABATINI, A ;
PETRARCA, V ;
DIDECO, MA .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1979, 73 (05) :483-497