Distance distribution of binary codes and the error probability of decoding

被引:24
作者
Barg, A [1 ]
McGregor, A
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
binary-symmetric channel (BSC); channel reliability; distance distribution; union bound;
D O I
10.1109/TIT.2005.858977
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of bounding below the probability of error under maximum-likelihood decoding of a binary code with a known distance distribution used on a binary-symmetric channel (BSC). An improved upper bound is given for the maximum attainable exponent of this probability (the reliability function of the channel). In particular, we prove that the "random coding exponent" is the true value of the channel reliability for codes rate R in some interval immediately below the critical rate of the channel. An analogous result is obtained for the Gaussian channel.
引用
收藏
页码:4237 / 4246
页数:10
相关论文
共 28 条
[1]   Binomial moments of the distance distribution: Bounds and applications [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :438-452
[2]   A new upper bound on the reliability function of the Gaussian channel [J].
Ashikhmin, AE ;
Barg, A ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (06) :1945-1961
[3]   Random codes: Minimum distances and error exponents [J].
Barg, A ;
Forney, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) :2568-2573
[4]  
Blahut R.E., 1987, Principles and Practice of Information Theory
[5]  
Burnashev M. V., 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252), DOI 10.1109/ISIT.2001.935996
[7]   On minimal α-mean error parameter transmission over a Poisson channel [J].
Burnashev, MV ;
Kutoyants, YA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) :2505-2515
[8]  
BURNASHEV MV, 2000, PROBL INFORM TRANSM, V36, P3
[9]  
COHEN A, 2004, IEEE T INF THEOR FEB, P290
[10]  
Csiszar I., 1981, INFORM THEORY CODING