Linear k-arboricity of complete bipartite graphs

被引:0
|
作者
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Mao, Yaping [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[4] Key Lab IOT Qinghai Prov, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Linear k-forest; linear k-arboricity; complete bipartite graph; 2-ARBORICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear k-forest refers to a forest in which every component is a path of length at most k. The linear k-arboricity of a graph G is defined as the least number of linear k-forests, whose union is the set of all edges of G. Recently, Zuo et al. obtained the exact values of the linear 2- and 4-arboricity of complete bipartite graphs K-m,K-n for some m and n. In this paper, the exact values of the linear 2i-arboricity of complete bipartite graphs K-2in+2n,K-2in, K-2in+2n,K-2in+1 and K-2in+2n+1,K-2in are obtained, which can be seen as an extension of Zuo et al.' s results.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [41] Coloring Complete and Complete Bipartite Graphs from Random Lists
    Casselgren, Carl Johan
    Haggkvist, Roland
    GRAPHS AND COMBINATORICS, 2016, 32 (02) : 533 - 542
  • [42] Coloring Complete and Complete Bipartite Graphs from Random Lists
    Carl Johan Casselgren
    Roland Häggkvist
    Graphs and Combinatorics, 2016, 32 : 533 - 542
  • [43] Large sets of λ-fold K1,3-factors of complete bipartite graphs
    Hao, Guohui
    Kang, Qingde
    ARS COMBINATORIA, 2012, 107 : 465 - 472
  • [44] Signed domatic numbers of the complete bipartite graphs
    Volkmann, L
    UTILITAS MATHEMATICA, 2005, 68 : 71 - 77
  • [45] OPTIMAL ORIENTATIONS OF SUBGRAPHS OF COMPLETE BIPARTITE GRAPHS
    Lakshmi, R.
    Rajasekaran, G.
    Sampathkumar, R.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 19 - 29
  • [46] A note on the thickness of some complete bipartite graphs
    Hu, Siwei
    Chen, Yichao
    ARS MATHEMATICA CONTEMPORANEA, 2018, 14 (02) : 329 - 344
  • [47] Enumeration for spanning forests of complete bipartite graphs
    Jin, YL
    Liu, CL
    ARS COMBINATORIA, 2004, 70 : 135 - 138
  • [48] ON THE BAR VISIBILITY NUMBER OF COMPLETE BIPARTITE GRAPHS
    Cao, Weiting
    West, Douglas B.
    Yang, Yan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2234 - 2248
  • [49] Regular orientable embeddings of complete bipartite graphs
    Kwak, JH
    Kwon, YS
    JOURNAL OF GRAPH THEORY, 2005, 50 (02) : 105 - 122
  • [50] The Thickness of Some Complete Bipartite and Tripartite Graphs
    Hu, Si-wei
    Chen, Yi-chao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04): : 1001 - 1014