Linear k-arboricity of complete bipartite graphs

被引:0
|
作者
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Mao, Yaping [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[4] Key Lab IOT Qinghai Prov, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Linear k-forest; linear k-arboricity; complete bipartite graph; 2-ARBORICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear k-forest refers to a forest in which every component is a path of length at most k. The linear k-arboricity of a graph G is defined as the least number of linear k-forests, whose union is the set of all edges of G. Recently, Zuo et al. obtained the exact values of the linear 2- and 4-arboricity of complete bipartite graphs K-m,K-n for some m and n. In this paper, the exact values of the linear 2i-arboricity of complete bipartite graphs K-2in+2n,K-2in, K-2in+2n,K-2in+1 and K-2in+2n+1,K-2in are obtained, which can be seen as an extension of Zuo et al.' s results.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [31] Complete bipartite graphs flexible in the plane
    Kovalev, M. D.
    Orevkov, S. Yu.
    SBORNIK MATHEMATICS, 2023, 214 (10) : 1390 - 1414
  • [32] Embedding Complete Bipartite Graphs into Wheel Related Graphs
    Greeni, A. Berin
    Joshwa, P. Leo
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (04) : 645 - 648
  • [33] Crossing numbers of complete bipartite graphs
    Balogh, Jozsef
    Lidicky, Bernard
    Norin, Sergey
    Pfender, Florian
    Salazar, Gelasio
    Spiro, Sam
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 78 - 87
  • [34] Multicolored forests in complete bipartite graphs
    Brualdi, RA
    Hollingsworth, S
    DISCRETE MATHEMATICS, 2001, 240 (1-3) : 239 - 245
  • [35] On k-graceful labeling of pendant edge extension of complete bipartite graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 188 - 199
  • [36] Terminal-pairability in complete bipartite graphs with non-bipartite demands Edge-disjoint paths in complete bipartite graphs
    Colucci, Lucas
    Erdos, Peter L.
    Gyori, Ervin
    Mezei, Tamas Robert
    THEORETICAL COMPUTER SCIENCE, 2019, 775 : 16 - 25
  • [37] Large sets of K2,2-decomposition of complete bipartite graphs
    Hao, Guohui
    ARS COMBINATORIA, 2012, 107 : 353 - 360
  • [38] A Study of Anti-Magic Graphs on Corona Product of Complete Graphs and Complete Bipartite Graphs
    Muya, James Githinji
    Shobhalatha, G.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (05): : 1337 - 1345
  • [39] Zumkeller Labeling Algorithms for Complete Bipartite Graphs and Wheel Graphs
    Balamurugan, B. J.
    Thirusangu, K.
    Thomas, D. G.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 1, 2015, 324 : 405 - 413
  • [40] Large sets of λ-fold K2,2-factors of complete bipartite graphs
    Hao, Guohui
    Kang, Qingde
    UTILITAS MATHEMATICA, 2016, 99 : 369 - 373