Linear k-arboricity of complete bipartite graphs

被引:0
|
作者
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Mao, Yaping [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[4] Key Lab IOT Qinghai Prov, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Linear k-forest; linear k-arboricity; complete bipartite graph; 2-ARBORICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear k-forest refers to a forest in which every component is a path of length at most k. The linear k-arboricity of a graph G is defined as the least number of linear k-forests, whose union is the set of all edges of G. Recently, Zuo et al. obtained the exact values of the linear 2- and 4-arboricity of complete bipartite graphs K-m,K-n for some m and n. In this paper, the exact values of the linear 2i-arboricity of complete bipartite graphs K-2in+2n,K-2in, K-2in+2n,K-2in+1 and K-2in+2n+1,K-2in are obtained, which can be seen as an extension of Zuo et al.' s results.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [21] The competition graphs of oriented complete bipartite graphs
    Kim, Suh-Ryung
    Lee, Jung Yeun
    Park, Boram
    Sano, Yoshio
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 182 - 190
  • [22] K1,p(2)-factorization of complete bipartite graphs
    Du, B
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 273 - 279
  • [23] P4k-1-factorization of complete bipartite graphs
    Du, BL
    Wang, J
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04): : 539 - 547
  • [24] P4k-1-factorization of complete bipartite graphs
    DU Beiliang & WANG Jian Department of Mathematics
    Nantong Vocational College
    Science China Mathematics, 2005, (04) : 539 - 547
  • [25] Complete bipartite graphs deleted in Ramsey graphs
    Li, Yan
    Li, Yusheng
    Wang, Ye
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 212 - 218
  • [26] Subdivisions of large complete bipartite graphs and long induced paths in k-connected graphs
    Böhme, T
    Mohar, B
    Skrekovski, R
    Stiebitz, M
    JOURNAL OF GRAPH THEORY, 2004, 45 (04) : 270 - 274
  • [27] The Quest for the Eulerian Recurrent Lengths of Complete Bipartite Graphs and Complete Graphs
    Jimbo, Shuji
    ADVANCED SCIENCE LETTERS, 2014, 20 (10-12) : 2328 - 2333
  • [28] Interval Minors of Complete Bipartite Graphs
    Mohar, Bojan
    Rafiey, Arash
    Tayfeh-Rezaie, Behruz
    Wu, Hehui
    JOURNAL OF GRAPH THEORY, 2016, 82 (03) : 312 - 321
  • [29] The generalized connectivity of complete bipartite graphs
    Li, Shasha
    Li, Wei
    Li, Xueliang
    ARS COMBINATORIA, 2012, 104 : 65 - 79
  • [30] An Algorithm for the Orientation of Complete Bipartite Graphs
    Zhao, Lingqi
    Wang, Mujiangshan
    Zhang, Xuefei
    Lin, Yuqing
    Wang, Shiying
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 361 - 364