STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS

被引:38
作者
Hiptmair, Ralf [1 ]
Moiola, Andrea [1 ]
Perugia, Ilaria [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, CH-8092 Zurich, Switzerland
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
关键词
Time-harmonic Maxwell's equations; impedance boundary conditions; stability estimates; regularity; NONSMOOTH DOMAINS; INTEGRAL-EQUATION; ELEMENT METHODS; SCATTERING; POLYHEDRA; TRACES;
D O I
10.1142/S021820251100574X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators.
引用
收藏
页码:2263 / 2287
页数:25
相关论文
共 24 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1985, MONOGRAPHS STUDIES M
[4]  
[Anonymous], THESIS U MARYLAND US
[5]  
Axler S., 2001, GRADUATE TEXTS MATH
[6]   On traces for H(curl, Ω) in Lipschitz domains [J].
Buffa, A ;
Costabel, M ;
Sheen, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :845-867
[7]   Boundary element methods for Maxwell's equations on non-smooth domains [J].
Buffa, A ;
Costabel, M ;
Schwab, C .
NUMERISCHE MATHEMATIK, 2002, 92 (04) :679-710
[8]  
Buffa A, 2001, MATH METHOD APPL SCI, V24, P9, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO
[9]  
2-2
[10]   Wave-number-explicit bounds in time-harmonic scattering [J].
Chandler-Wilde, Simon N. ;
Monk, Peter .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) :1428-1455