Experimental constraints on the phase diagram of elemental zirconium

被引:83
作者
Zhang, JZ
Zhao, YS
Pantea, C
Qian, J
Daemen, LL
Rigg, PA
Hixson, RS
Greeff, CW
Gray, GT
Yang, YP
Wang, LP
Wang, YB
Uchida, T
机构
[1] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, T Div, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, DX Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA
[5] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA
[6] Univ Chicago, Adv Photon Source, Argonne Natl Lab, GESCARS, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
metals; amorphous materials; X-ray diffraction; phase transitions; high pressure;
D O I
10.1016/j.jpcs.2005.03.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The phase diagram of zirconium metal has been studied using synchrotron X-ray diffraction and time-of-flight neutron scattering at temperatures and pressures up to 1273 K and 17 GPa. The equilibrium phase boundary of the alpha-omega transition has a dT/dP slope of 473 K/GPa, and the extrapolated transition pressure at ambient temperature is located at 3.4 GPa. For the omega-beta transition, the phase boundary has a negative dT/dP slope of 15.5 K/GPa between 6.4 and 15.3 GPa, which is substantially smaller than a previously reported value of - 39 +/- 5 K/GPa in the pressure range of 32-35 GPa. This difference indicates a significant curvature of the phase boundary between 15.3 and 35 GPa. The alpha-omega-beta triple point was estimated to be at 4.9 GPa and 953 K, which is comparable to previous results obtained from a differential thermal analysis. Except for the three known crystalline forms, the beta phase of zirconium metal was found to possess an extraordinary glass forming ability at pressures between 6.4 and 8.6 GPa. This transformation leads to a limited stability field for the beta phase in the pressure range of 6-16 GPa and to complications of high-temperature portion of phase diagram for zirconium metal. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1213 / 1219
页数:7
相关论文
共 28 条
[1]  
Christian JW, 1975, THEORY TRANSFORMATIO
[2]   HIGH-PRESSURE EQUATION OF STATE FOR NACL, KCL, AND CSCL [J].
DECKER, DL .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (08) :3239-&
[3]  
FROMM E, 1976, GASE KOHLENSTIFF MET
[4]   ACOUSTIC VELOCITIES AND PHASE-TRANSITIONS IN MOLYBDENUM UNDER STRONG SHOCK COMPRESSION [J].
HIXSON, RS ;
BONESS, DA ;
SHANER, JW ;
MORIARTY, JA .
PHYSICAL REVIEW LETTERS, 1989, 62 (06) :637-640
[5]   CRYSTAL STRUCTURES OF TITANIUM, ZIRCONIUM, AND HAFNIUM AT HIGH PRESSURES [J].
JAMIESON, JC .
SCIENCE, 1963, 140 (356) :72-&
[6]   SOLID-SOLID TRANSITIONS IN TITANIUM AND ZIRCONIUM AT HIGH PRESSURES [J].
JAYARAMAN, A ;
KLEMENT, W ;
KENNEDY, GC .
PHYSICAL REVIEW, 1963, 131 (02) :644-&
[7]   Zirconium under pressure: structural anomalies and phase transitions [J].
Jona, F ;
Marcus, PM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (29) :5009-5016
[8]   The wustite enigma [J].
Mao, HK ;
Shu, JF ;
Fei, YW ;
Hu, JZ ;
Hemley, RJ .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1996, 96 (2-3) :135-145
[9]  
McQueen R. G., 1970, HIGH VELOCITY IMPACT
[10]  
Olinger B., 1973, High Temperatures - High Pressures, V5, P123