Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface

被引:53
|
作者
Xie, Yumei [1 ]
Williams, Nolann G. [1 ]
Tolic, Ana [1 ]
Chrisler, William B. [2 ]
Teeguarden, Justin G. [2 ]
Maddux, Bettye L. S. [3 ]
Pounds, Joel G. [2 ]
Laskin, Alexander [1 ]
Orr, Galya [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA
[3] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA
关键词
ZnO nanoparticles; Zn2+; air-liquid interface; aerosol exposures; toxicity; alveolar epithelial cells; ZINC-OXIDE NANOPARTICLE; IN-VITRO; METAL-OXIDE; PULMONARY; CYTOTOXICITY; PARTICLES; DOSIMETRY; EXPRESSION; GROWTH;
D O I
10.1093/toxsci/kfr251
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures to airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI) and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 h post-exposure, we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.
引用
收藏
页码:450 / 461
页数:12
相关论文
共 50 条
  • [31] Temporal differentiation of bovine airway epithelial cells grown at an air-liquid interface
    Cozens, Daniel
    Sutherland, Erin
    Marchesi, Francesco
    Taylor, Geraldine
    Berry, Catherine C.
    Davies, Robert L.
    SCIENTIFIC REPORTS, 2018, 8
  • [32] Ciliogenesis in cryopreserved mammalian tracheal epithelial cells cultured at the air-liquid interface
    Mao, Hua
    Wang, Yuchi
    Yuan, Weihua
    Wong, Lid B.
    CRYOBIOLOGY, 2009, 59 (03) : 250 - 257
  • [33] Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media
    Leung, Clarus
    Wadsworth, Samuel J.
    Yang, S. Jasemine
    Dorscheid, Delbert R.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2020, 318 (05) : L1063 - L1073
  • [34] Toxicity of microplastic fibers containing azobenzene disperse dyes to human lung epithelial cells cultured at an air-liquid interface
    O'Connor, Amber
    Santeli, Anna Villalobos
    Shankar, Sripriya Nannu
    Shirkhani, Amin
    Baker, Tracie R.
    Wu, Chang-Yu
    Mehrad, Borna
    Ferguson, P. Lee
    Sabo-Attwood, Tara
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 480
  • [35] Carbon Nanotube Immunotoxicity in Alveolar Epithelial Type II Cells Is Mediated by Physical Contact-Independent Cell-Cell Interaction with Macrophages as Demonstrated in an Optimized Air-Liquid Interface (ALI) Coculture Model
    Yadav, Brijesh
    Yadav, Jagjit S.
    NANOMATERIALS, 2024, 14 (15)
  • [36] Air-liquid interface culture changes surface properties of A549 cells
    Oehlinger, Kristin
    Kolesnik, Tatjana
    Meindl, Claudia
    Galle, Birgit
    Absenger-Novak, Markus
    Kolb-Lenz, Dagmar
    Froehlich, Eleonore
    TOXICOLOGY IN VITRO, 2019, 60 : 369 - 382
  • [37] Establishing an air-liquid interface exposure system for exposure of lung cells to gases
    Guenette, Josee
    Breznan, Dalibor
    Thomson, Errol M.
    INHALATION TOXICOLOGY, 2022, 34 (3-4) : 80 - 89
  • [38] Air-liquid interface cultures trigger a metabolic shift in intestinal epithelial cells (IPEC-1)
    Stollmeier, Martin
    Kahlert, Stefan
    Zuschratter, Werner
    Oster, Michael
    Wimmers, Klaus
    Isermann, Berend
    Rothkoetter, Hermann-Josef
    Nossol, Constanze
    HISTOCHEMISTRY AND CELL BIOLOGY, 2023, 159 (05) : 389 - 400
  • [39] Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface
    Durantie, Estelle
    Vanhecke, Dimitri
    Rodriguez-Lorenzo, Laura
    Delhaes, Flavien
    Balog, Sandor
    Septiadi, Dedy
    Bourquin, Joel
    Petri-Fink, Alke
    Rothen-Rutishauser, Barbara
    PARTICLE AND FIBRE TOXICOLOGY, 2017, 14
  • [40] Enhanced sodium absorption in middle ear epithelial cells cultured at air-liquid interface
    Portier, F
    Kania, R
    Planès, C
    Hsu, WC
    Couette, S
    Huy, PTB
    Herman, P
    ACTA OTO-LARYNGOLOGICA, 2005, 125 (01) : 16 - 22