Transforming random elements and shifting random fields

被引:0
作者
Thorisson, H
机构
关键词
topological transformation group; random field; invariant sigma-algebra; total variation; coupling;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a locally compact second countable topological transformation group acting measurably on an arbitrary space. We show that the distributions of two random elements X and X' in this space agree on invariant sets if and only if there is a random transformation Gamma such that Gamma X has the same distribution as X'. Applying this to random fields in d dimensions under site shifts, we show further that these equivalent claims are also equivalent to site-average total variation convergence. This convergence result extends to amenable groups.
引用
收藏
页码:2057 / 2064
页数:8
相关论文
共 50 条
  • [21] RANDOM FIELDS WITH POLYA CORRELATION STRUCTURE
    Finlay, Richard
    Seneta, Eugene
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 1037 - 1050
  • [22] Combinatorial Approach to the Description of Random Fields
    Khachatryan, L. A.
    Nahapetian, B. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (10) : 2337 - 2347
  • [23] Limiting crossing probabilities of random fields
    Pereira, L.
    Ferreira, H.
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (03) : 884 - 891
  • [24] Frequency polygons for continuous random fields
    Bensaïd N.
    Dabo-Niang S.
    Statistical Inference for Stochastic Processes, 2010, 13 (1) : 55 - 80
  • [25] Strong limit theorems for random fields
    Gut, Allan
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 : 125 - 157
  • [26] Combinatorial Approach to the Description of Random Fields
    L. A. Khachatryan
    B. S. Nahapetian
    Lobachevskii Journal of Mathematics, 2021, 42 : 2337 - 2347
  • [27] Rotatable random sequences in local fields
    Evans, Steven N.
    Raban, Daniel
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [28] Coordinates Changed Random Fields on the Sphere
    D'Ovidio, Mirko
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (04) : 1153 - 1176
  • [29] Asymptotic behavior of increments of random fields
    Frolov A.N.
    Journal of Mathematical Sciences, 2005, 128 (1) : 2604 - 2613
  • [30] On operator periodically correlated random fields
    Gaspar, P
    RECENT ADVANCES IN OPERATOR THEORY, OPEATOR ALGEBRAS, AND THEIR APPLICATIONS, 2005, 153 : 143 - 156