Finsler metric and elastic constants for weak anisotropic media

被引:9
作者
Yajima, Takahiro [1 ]
Yamasaki, Kazuhito [2 ]
Nagahama, Hiroyuki [3 ]
机构
[1] Tokyo Univ Sci, Dept Phys, Fac Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Kobe Univ, Fac Sci, Dept Earth & Planetary Sci, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] Tohoku Univ, Grad Sch Sci, Dept Geoenvironm Sci, Aoba Ku, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
Seismic ray theory; Weak anisotropic media; Elastic constants; Finsler geometry; mth root metric; Berwald Gauss curvature; WAVE-FRONTS; GEOMETRY; REFLECTION; MOVEOUT; ROCKS; RAYS;
D O I
10.1016/j.nonrwa.2011.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Differential geometric expressions of elastic constants for a seismic ray path are studied based on Finsler geometry. A Finsler function named mth root metric is considered to discuss transverse isotropic media in weak anisotropic case. Finsler parameters in the mth root metric are estimated from phase velocity surfaces. The slight differences from an elliptic wavefront can be expressed by the Finsler parameters. It is found a correlation between the Finsler parameters and the weak anisotropy parameters consisted of elastic constants. Especially, a positivity of weak anisotropy parameter influences on a restriction of Finsler parameter. On the other hand, a geometric condition of Finsler parameter gives a limitation of weak anisotropy parameter. Moreover, the Berwald Gauss curvature of mth root metric induces a relationship between the spreading ray paths and the weak anisotropy parameter. Therefore, the seismic ray paths in weak isotropic media can be expressed by the Finslerian properties of;nth root metric. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3177 / 3184
页数:8
相关论文
共 35 条
[1]   Velocity analysis using nonhyperbolic moveout in transversely isotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 1997, 62 (06) :1839-1854
[2]  
Anderson O., 1995, AGU HDB, V2, P64, DOI DOI 10.1029/RF002P0064
[3]  
[Anonymous], 1986, Foundations of Finsler Geometry and Special Finsler Spaces
[4]  
[Anonymous], 1970, Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystal
[5]  
Antonelli P.L., 1993, THEORY SPRAYS FINSLE
[6]   Seismic rays as Finsler geodesics [J].
Antonelli, PL ;
Bóna, A ;
Slawinski, MA .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2003, 4 (05) :711-722
[7]  
Antonelli PL, 2003, FINSLER AND LAGRANGE GEOMETRIES, PROCEEDINGS, P17
[8]  
Antonelli PL., 1999, FUNDAMENTALS FINSLER
[9]   LONG-WAVE ELASTIC ANISOTROPY PRODUCED BY HORIZONTAL LAYERING [J].
BACKUS, GE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (11) :4427-&
[10]  
Balan V, 2010, U POLITEH BUCH SER A, V72, P3