Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator

被引:23
作者
Bonder, JF
Pinasco, JP
机构
[1] Univ Buenos Aires, RA-1428 Buenos Aires, DF, Argentina
[2] Univ San Andres, RA-1684 Buenos Aires, DF, Argentina
来源
ARKIV FOR MATEMATIK | 2003年 / 41卷 / 02期
关键词
D O I
10.1007/BF02390815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the spectral counting function for the weighted p-laplacian in one dimension. First, we prove that all the eigenvalues can be obtained by a minimax characterization and then we show the existence of a Weyl-type leading term. Finally we find estimates for the remainder term.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 16 条
[1]  
Anane A., 1996, PITMAN RES NOTES MAT, V343, P1
[2]  
[Anonymous], 1977, B SOC MATH FRANCE ME, V51-52, P125
[3]  
AZORERO JG, 1988, CR ACAD SCI I-MATH, V307, P75
[4]  
Courant R., 1953, METHODS MATH PHYS, V1
[5]   MULTIPLE SOLUTIONS FOR THE P-LAPLACIAN UNDER GLOBAL NONRESONANCE [J].
DELPINO, MA ;
MANASEVICH, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :131-138
[6]  
Drabek P., 1999, DIFFERENTIAL INTEGRA, V12, P773
[7]   ON THE MINKOWSKI MEASURABILITY OF FRACTALS [J].
FALCONER, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1115-1124
[8]   REMAINDER-ESTIMATES FOR THE ASYMPTOTICS OF ELLIPTIC EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHTS [J].
FLECKINGER, J ;
LAPIDUS, ML .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 98 (04) :329-356
[9]   AN EXAMPLE OF A 2-TERM ASYMPTOTICS FOR THE COUNTING FUNCTION OF A FRACTAL DRUM [J].
FLECKINGERPELLE, J ;
VASSILIEV, DG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :99-116
[10]  
Fuik S., 1973, Lecture Notes in Mathematics, V346