Surface scaling behaviour of size-selected Ag-nanocluster film growing under subsequent shadowing process

被引:5
作者
Barman, Pintu [1 ,2 ]
Deka, Anindita [1 ,2 ]
Mondal, Shyamal [1 ,3 ,4 ]
Chowdhury, Debasree [1 ,5 ]
Bhattacharyya, Satyaranjan [1 ]
机构
[1] Saha Inst Nucl Phys, 1-AF Bidhan Nagar, Kolkata 700064, India
[2] Homi Bhaba Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
[3] Maharaja Manindra Chandra Coll, 20 Ramkanto Bose St, Kolkata 700003, India
[4] Fdn Bruno Kessler, Ctr Mat & Microsyst, Via Sommar 18, I-38123 Trento, Italy
[5] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy
关键词
silver; size-selected clusters; soft-landing deposition; growth dynamics; atomic force microscopy; scanning electron microscopy; shadowing effect; SILVER NANOPARTICLES; METAL-CLUSTERS; GROWTH; DEPOSITION; INSTABILITY; FABRICATION; INVARIANCE;
D O I
10.1088/1361-6463/ab87c3
中图分类号
O59 [应用物理学];
学科分类号
摘要
Surface morphology of size-selected silver nanocluster films grown by dc magnetron sputtering has been investigated by means of an atomic force microscopy (AFM). From the height-height correlation functions obtained from corresponding AFM images, the scaling exponents are calculated and two types of growth regimes have been observed. In the first regime, the growth exponent is found to be beta(1) = 0.26 +/- 0.01 close to the Kardar-Parisi-Zhang growth exponent, while in the second growth regime shadowing effect plays dominant role which gives the growth exponent value beta(2) = 0.85 +/- 0.15. On the other hand for the whole deposition regime, the roughness exponent value is found to be constant around alpha = 0.76 +/- 0.02. UV-Vis spectroscopy measurement suggests how the average reflectance of the film surface changes with different growth times.
引用
收藏
页数:10
相关论文
共 42 条
[11]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[12]  
Family F., 1991, DYNAMICS FRACTAL SUR, DOI 10.1142/1452
[13]   Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria [J].
Guzman, Maribel ;
Dille, Jean ;
Godet, Stephane .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2012, 8 (01) :37-45
[14]  
Healy T.Halpin., 1995, PHYS REP, V254, P215
[15]   Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone) [J].
Huang, HH ;
Ni, XP ;
Loy, GL ;
Chew, CH ;
Tan, KL ;
Loh, FC ;
Deng, JF ;
Xu, GQ .
LANGMUIR, 1996, 12 (04) :909-912
[16]   Instability of kinetic roughening in sputter-deposition growth of Pt on glass [J].
Jeffries, JH ;
Zuo, JK ;
Craig, MM .
PHYSICAL REVIEW LETTERS, 1996, 76 (26) :4931-4934
[17]   DEPOSITION, DIFFUSION AND AGGREGATION OF ATOMS ON SURFACES - A MODEL FOR NANOSTRUCTURE GROWTH [J].
JENSEN, P ;
BARABASI, AL ;
LARRALDE, H ;
HAVLIN, S ;
STANLEY, HE .
PHYSICAL REVIEW B, 1994, 50 (20) :15316-15329
[18]   Catalytic properties of silver nanoparticles supported on silica spheres [J].
Jiang, ZJ ;
Liu, CY ;
Sun, LW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (05) :1730-1735
[19]  
Karabacak T, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075329
[20]   Network behavior in thin film growth dynamics [J].
Karabacak, T. ;
Guclu, H. ;
Yuksel, M. .
PHYSICAL REVIEW B, 2009, 79 (19)