Biomimetic three-dimensional microenvironment for controlling stem cell fate

被引:44
作者
Zhang, Hu [1 ]
Dai, Sheng [1 ]
Bi, Jingxiu [1 ]
Liu, Kuo-Kang [2 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
关键词
stem cell; microenvironment; stem cell niche; microscale technologies; bioprinting; optical tweezers; MARROW STROMAL CELLS; FLUID-FLOW; EXTRACELLULAR-MATRIX; IN-VITRO; SHEAR-STRESS; OSTEOGENIC DIFFERENTIATION; EMBRYONIC FIBROBLASTS; OPTICAL TWEEZERS; GROWTH; SCAFFOLDS;
D O I
10.1098/rsfs.2011.0035
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stem cell therapy is an emerging technique which is being translated into treatment of degenerated tissues. However, the success of translation relies on the stem cell lineage commitment in the degenerated regions of interest. This commitment is precisely controlled by the stem cell microenvironment. Engineering a biomimetic three-dimensional microenvironment enables a thorough understanding of the mechanisms of governing stem cell fate. We review the individual microenvironment components, including soluble factors, extracellular matrix, cell-cell interaction and mechanical stimulation. The perspectives in creating the biomimetic microenvironments are discussed with emerging techniques.
引用
收藏
页码:792 / 803
页数:12
相关论文
共 99 条
[1]   Biomechanical forces promote embryonic haematopoiesis [J].
Adamo, Luigi ;
Naveiras, Olaia ;
Wenzel, Pamela L. ;
McKinney-Freeman, Shannon ;
Mack, Peter J. ;
Gracia-Sancho, Jorge ;
Suchy-Dicey, Astrid ;
Yoshimoto, Momoko ;
Lensch, M. William ;
Yoder, Mervin C. ;
Garcia-Cardena, Guillermo ;
Daley, George Q. .
NATURE, 2009, 459 (7250) :1131-U120
[2]   Probing the role of multicellular organization in three-dimensional microenvironments [J].
Albrecht, DR ;
Underhill, GH ;
Wassermann, TB ;
Sah, RL ;
Bhatia, SN .
NATURE METHODS, 2006, 3 (05) :369-375
[3]   Cell differentiation by mechanical stress [J].
Altman, GH ;
Horan, RL ;
Martin, I ;
Farhadi, J ;
Stark, PRH ;
Volloch, V ;
Richmond, JC ;
Vunjak-Novakovic, G ;
Kaplan, DL .
FASEB JOURNAL, 2001, 15 (14) :270-+
[4]   Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient [J].
Amariglio, Ninette ;
Hirshberg, Abraham ;
Scheithauer, Bernd W. ;
Cohen, Yoram ;
Loewenthal, Ron ;
Trakhtenbrot, Luba ;
Paz, Nurit ;
Koren-Michowitz, Maya ;
Waldman, Dalia ;
Leider-Trejo, Leonor ;
Toren, Amos ;
Constantini, Shlomi ;
Rechavi, Gideon .
PLOS MEDICINE, 2009, 6 (02) :221-231
[5]   Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells [J].
Anderson, DG ;
Levenberg, S ;
Langer, R .
NATURE BIOTECHNOLOGY, 2004, 22 (07) :863-866
[6]   Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations [J].
Bai, Ke ;
Huang, Yan ;
Jia, Xiaoling ;
Fan, Yubo ;
Wang, Wen .
JOURNAL OF BIOMECHANICS, 2010, 43 (06) :1176-1181
[7]   The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces [J].
Benoit, DSW ;
Anseth, KS .
BIOMATERIALS, 2005, 26 (25) :5209-5220
[8]   Tissue Growth Modeling in a Wavy-Walled Bioreactor [J].
Bilgen, Bahar ;
Uygun, Korkut ;
Bueno, Ericka M. ;
Sucosky, Philippe ;
Barabino, Gilda A. .
TISSUE ENGINEERING PART A, 2009, 15 (04) :761-771
[9]   Modeling proliferative tissue growth: A general approach and an avian case study [J].
Binder, Benjamin J. ;
Landman, Kerry A. ;
Simpson, Matthew J. ;
Mariani, Michael ;
Newgreen, Donald F. .
PHYSICAL REVIEW E, 2008, 78 (03)
[10]   Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model [J].
Björklund, LM ;
Sánchez-Pernaute, R ;
Chung, SM ;
Andersson, T ;
Chen, IYC ;
McNaught, KS ;
Brownell, AL ;
Jenkins, BG ;
Wahlestedt, C ;
Kim, KS ;
Isacson, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2344-2349