High-order connected moments expansion for the Rabi Hamiltonian

被引:1
作者
Amore, Paolo [2 ]
Fernandez, Francisco M. [1 ,3 ]
Rodriguez, Martin [2 ]
机构
[1] CCT Plata CONICET, Div Quim Terica, INIFTA UNLP, RA-1900 La Plata, Argentina
[2] Univ Colima, CUICBAS, Fac Ciencias, Colima, Mexico
[3] UNLP, CCT La Plata, CONICET, INIFTA,Div Quim Teor, RA-1900 La Plata, Argentina
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2012年 / 10卷 / 01期
关键词
connected moment expansion; Rabi Hamiltonian; GROUND-STATE ENERGY; ZERO-POINT ENERGY; T-EXPANSION; ANALYTIC PROPERTIES; APPROXIMATIONS; TOOL;
D O I
10.2478/s11534-011-0101-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the convergence properties of the connected moments expansion (CMX) for the Rabi Hamiltonian. To this end we calculate the moments and connected moments of the Hamiltonian operator to a sufficiently large order. Our large-order results suggest that the CMX is not reliable for most practical purposes because the expansion exhibits considerable oscillations.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 30 条
[1]   Rayleigh-Ritz variation method and connected-moments expansions [J].
Amore, Paolo ;
Fernandez, Francisco M. .
PHYSICA SCRIPTA, 2009, 80 (05)
[2]  
[Anonymous], 1999, Mathematical Methods of Statistics
[3]   The connected-moments polynomial approach for Hamiltonian eigenvalues calculation and its application to the one-particle systems [J].
Bartashevich, Igor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2008, 108 (02) :272-278
[4]   Variational results for the Rabi Hamiltonian [J].
Bishop, RF ;
Davidson, NJ ;
Quick, RM ;
van der Walt, DM .
PHYSICS LETTERS A, 1999, 254 (3-4) :215-224
[6]  
CIOSLOWSKI J, 1987, INT J QUANTUM CHEM, P563
[8]   ESTIMATION OF THE OVERLAP BETWEEN THE APPROXIMATE AND EXACT WAVE-FUNCTION OF THE GROUND-STATE FROM THE CONNECTED-MOMENTS EXPANSION [J].
CIOSLOWSKI, J .
PHYSICAL REVIEW A, 1987, 36 (07) :3441-3442
[9]   CONNECTED-MOMENTS EXPANSION - A NEW TOOL FOR QUANTUM MANY-BODY THEORY [J].
CIOSLOWSKI, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :83-85
[10]  
FERNANDEZ FM, ARXIV08071442MATHPH