Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces

被引:97
作者
Najati, Abbas [1 ]
Moghimi, Mohammad B. [1 ]
机构
[1] Univ Mohaghegh, Dept Math, Fac Sci, Ardebili, Iran
关键词
Hyers-Ulam-Rassias stability; quadratic function; additive function; quasi-Banach space; p-Banach space;
D O I
10.1016/j.jmaa.2007.03.104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the general solution of the functional equation f (2x + y) + f (2x - y) = f (x + y) + f (x - y) + 2f (2x) - 2f (x) and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 415
页数:17
相关论文
共 15 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
Amir D., 1986, Operator Theory Adv. Appl., V20
[3]  
[Anonymous], 2000, GEOMETRIC NONLINEAR
[4]  
Cholewa P. W., 1984, AEQUATIONES MATH, V27, P76, DOI DOI 10.1007/BF02192660
[5]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[6]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[7]  
Grabiec A, 1996, PUBL MATH-DEBRECEN, V48, P217
[8]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[9]   On inner products in linear, metric spaces [J].
Jordan, P ;
Neumann, JV .
ANNALS OF MATHEMATICS, 1935, 36 :719-723
[10]  
Jun KW, 2001, MATH INEQUAL APPL, V4, P93