Qualitative analysis for a diffusive predator-prey model

被引:17
作者
Chen, Bin [1 ,2 ]
Wang, Mingxin [2 ]
机构
[1] Yancheng Teachers Coll, Dept Math, Yancheng 224001, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
基金
中国国家自然科学基金;
关键词
predator-prey model; iteration technique; stability; stationary patterns;
D O I
10.1016/j.camwa.2007.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the qualitative properties of a diffusive predator-prey model subject to the homogeneous Neumann boundary condition. By a comparison argument and iteration technique, under some hypotheses we prove that the positive constant steady state is globally asymptotically stable. We also establish the existence and non-existence of non-constant positive steady states (stationary patterns) by use of the degree theory and the a priori estimates. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:339 / 355
页数:17
相关论文
共 25 条
[1]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[2]   DECAY TO UNIFORM STATES IN ECOLOGICAL INTERACTIONS [J].
BROWN, PN .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (01) :22-37
[3]   Practical persistence in ecological models via comparison methods [J].
Cantrell, RS ;
Cosner, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :247-272
[4]   Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model [J].
Chen, WY ;
Peng, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) :550-564
[6]   CONVERGENCE TO HOMOGENEOUS EQUILIBRIUM STATE FOR GENERALIZED VOLTERRA-LOTKA SYSTEMS WITH DIFFUSION [J].
DEMOTTONI, P ;
ROTHE, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (03) :648-663
[7]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[8]   Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation [J].
Du, YH ;
Lou, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :321-349
[9]   Some uniqueness and exact multiplicity results for a predator-prey model [J].
Du, YH ;
Lou, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (06) :2443-2475
[10]   Asymptotic behaviour of positive steady states to a predator-prey model [J].
Du, Yihong ;
Wang, Mingxin .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :759-778