Central Limit Theorem for stationary Fleming-Viot particle systems in finite spaces

被引:6
作者
Lelievre, Tony [1 ]
Pillaud-Vivien, Loucas [2 ]
Reygner, Julien [3 ]
机构
[1] Univ Paris Est, CERMICS, ENPC, INRIA, F-77455 Marne La Vallee, France
[2] PSL Res Univ, INRIA, Dept Informat, ENS,CNRS, F-75005 Paris, France
[3] Univ Paris Est, CERMICS, ENPC, F-77455 Marne La Vallee, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2018年 / 15卷 / 02期
基金
欧洲研究理事会;
关键词
Central Limit Theorem; Fleming-Viot particle system; stationary distribution; DISTRIBUTIONS; APPROXIMATION;
D O I
10.30757/ALEA.v15-43
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Fleming-Viot particle system associated with a continuous-time Markov chain in a finite space. Assuming irreducibility, it is known that the particle system possesses a unique stationary distribution, under which its empirical measure converges to the quasistationary distribution of the Markov chain. We complement this Law of Large Numbers with a Central Limit Theorem. Our proof essentially relies on elementary computations on the infinitesimal generator of the Fleming-Viot particle system, and involves the so-called pi-return process in the expression of the asymptotic variance. Our work can be seen as an infinite-time version, in the setting of finite space Markov chains, of results by Del Moral and Miclo (2003) and Cerou et al. (2016,2017).
引用
收藏
页码:1163 / 1182
页数:20
相关论文
共 28 条
[1]  
Abou-Kandil H., 2003, SYSTEMS CONTROL FDN
[2]  
Aldous D., 1988, Probability in the Engineering and Informational Sciences, V2, P293
[3]  
[Anonymous], 1999, CONVERGE PROBAB MEAS, DOI DOI 10.1002/9780470316962
[4]   QUASISTATIONARY DISTRIBUTIONS AND FLEMING-VIOT PROCESSES IN FINITE SPACES [J].
Asselah, Amine ;
Ferrari, Pablo A. ;
Groisman, Pablo .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (02) :322-332
[5]   STOCHASTIC APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS ON COMPACT SPACES AND APPLICATIONS [J].
Benaim, Michel ;
Cloez, Bertrand ;
Panloup, Fabien .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (04) :2370-2416
[6]   A stochastic approximation approach to quasi-stationary distributions on finite spaces [J].
Benaim, Michel ;
Cloez, Bertrand .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 :1-14
[7]   Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions [J].
Burdzy, K ;
Holyst, R ;
Ingerman, D ;
March, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2633-2642
[8]   A Fleming-Viot particle representation of the Dirichlet Laplacian [J].
Burdzy, K ;
Holyst, R ;
March, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) :679-703
[9]  
Cerou F., 2017, ARXIV170906771
[10]  
Cerou F., 2016, ARXIV161100515