Scaling laws and dynamics of hashtags on Twitter

被引:6
作者
Chen, Hongjia H. [1 ,2 ]
Alexander, Tristram J. [3 ]
Oliveira, Diego F. M. [4 ,5 ]
Altmann, Eduardo G. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Auckland, Dept Math, Auckland 1010, New Zealand
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[5] Rensselaer Polytech Inst, Network Sci & Technol Ctr, 335 Mat Res Ctr 110 8th St, Troy, NY 12180 USA
关键词
D O I
10.1063/5.0004983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we quantify the statistical properties and dynamics of the frequency of hashtag use on Twitter. Hashtags are special words used in social media to attract attention and to organize content. Looking at the collection of all hashtags used in a period of time, we identify the scaling laws underpinning the hashtag frequency distribution (Zipf's law), the number of unique hashtags as a function of sample size (Heaps' law), and the fluctuations around expected values (Taylor's law). While these scaling laws appear to be universal, in the sense that similar exponents are observed irrespective of when the sample is gathered, the volume and the nature of the hashtags depend strongly on time, with the appearance of bursts at the minute scale, fat-tailed noise, and long-range correlations. We quantify this dynamics by computing the Jensen-Shannon divergence between hashtag distributions obtained tau times apart and we find that the speed of change decays roughly as 1 / tau. Our findings are based on the analysis of 3.5 x 10 9 hashtags used between 2015 and 2016.
引用
收藏
页数:8
相关论文
共 50 条
[31]   The spatiotemporal scaling laws of urban population dynamics [J].
Tan, Xingye ;
Huang, Bo ;
Batty, Michael ;
Li, Weiyu ;
Wang, Qi Ryan ;
Zhou, Yulun ;
Gong, Peng .
NATURE COMMUNICATIONS, 2025, 16 (01)
[32]   Detecting political biases of named entities and hashtags on Twitter [J].
Xiao, Zhiping ;
Zhu, Jeffrey ;
Wang, Yining ;
Zhou, Pei ;
Lam, Wen Hong ;
Porter, Mason A. ;
Sun, Yizhou .
EPJ DATA SCIENCE, 2023, 12 (01)
[33]   #bully: Uses of Hashtags in Posts About Bullying on Twitter [J].
Calvin, Angela J. ;
Bellmore, Amy ;
Xu, Jun-Ming ;
Zhu, Xiaojin .
JOURNAL OF SCHOOL VIOLENCE, 2015, 14 (01) :133-153
[34]   Defining Semantic Meta-hashtags for Twitter Classification [J].
Costa, Joana ;
Silva, Catarina ;
Antunes, Mario ;
Ribeiro, Bernardete .
ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, ICANNGA 2013, 2013, 7824 :226-235
[35]   Complex contagions and the diffusion of popular Twitter hashtags in Nigeria [J].
Fink, Clay ;
Schmidt, Aurora ;
Barash, Vladimir ;
Cameron, Christopher ;
Macy, Michael .
SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01) :1-19
[36]   Twitter Issue Response Hashtags as Affordances for Momentary Connectedness [J].
Rathnayake, Chamil ;
Suthers, Daniel D. .
SOCIAL MEDIA + SOCIETY, 2018, 4 (03)
[37]   On the use of URLs and hashtags in age prediction of Twitter users [J].
Pandya, Abhinay ;
Oussalah, Mourad ;
Monachesi, Paola ;
Kostakos, Panos ;
Loven, Lauri .
2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, :62-69
[38]   Exploring the Meaning behind Twitter Hashtags through Clustering [J].
Muntean, Cristina Ioana ;
Morar, Gabriela Andreea ;
Moldovan, Darie .
BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2012, 2012, 127 :231-242
[39]   Is Anyone Out There? Unpacking Q&A Hashtags on Twitter [J].
Rzeszotarski, Jeffrey M. ;
Spiro, Emma S. ;
Matias, Jorge Nathan ;
Monroy-Hernandez, Andres ;
Morris, Meredith Ringel .
32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), 2014, :2755-2758
[40]   A qualitative analysis of sarcasm, irony and related #hashtags on Twitter [J].
Sykora, Martin ;
Elayan, Suzanne ;
Jackson, Thomas W. .
BIG DATA & SOCIETY, 2020, 7 (02)