Scaling laws and dynamics of hashtags on Twitter

被引:6
|
作者
Chen, Hongjia H. [1 ,2 ]
Alexander, Tristram J. [3 ]
Oliveira, Diego F. M. [4 ,5 ]
Altmann, Eduardo G. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Auckland, Dept Math, Auckland 1010, New Zealand
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[5] Rensselaer Polytech Inst, Network Sci & Technol Ctr, 335 Mat Res Ctr 110 8th St, Troy, NY 12180 USA
关键词
D O I
10.1063/5.0004983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we quantify the statistical properties and dynamics of the frequency of hashtag use on Twitter. Hashtags are special words used in social media to attract attention and to organize content. Looking at the collection of all hashtags used in a period of time, we identify the scaling laws underpinning the hashtag frequency distribution (Zipf's law), the number of unique hashtags as a function of sample size (Heaps' law), and the fluctuations around expected values (Taylor's law). While these scaling laws appear to be universal, in the sense that similar exponents are observed irrespective of when the sample is gathered, the volume and the nature of the hashtags depend strongly on time, with the appearance of bursts at the minute scale, fat-tailed noise, and long-range correlations. We quantify this dynamics by computing the Jensen-Shannon divergence between hashtag distributions obtained tau times apart and we find that the speed of change decays roughly as 1 / tau. Our findings are based on the analysis of 3.5 x 10 9 hashtags used between 2015 and 2016.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On Recommending Hashtags in Twitter Networks
    Kywe, Su Mon
    Tuan-Anh Hoang
    Lim, Ee-Peng
    Zhu, Feida
    SOCIAL INFORMATICS, SOCINFO 2012, 2012, 7710 : 337 - 350
  • [2] Modeling the infectiousness of Twitter hashtags
    Skaza, Jonathan
    Blais, Brian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 : 289 - 296
  • [3] Scaling laws in geo-located Twitter data
    Arthur, Rudy
    Williams, Hywel T. P.
    PLOS ONE, 2019, 14 (07):
  • [4] Unsupervised semantic clustering of Twitter hashtags
    Vicient, Carlos
    Moreno, Antonio
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 1119 - 1120
  • [5] On Identifying Hashtags in Disaster Twitter Data
    Chowdhury, Jishnu Ray
    Caragea, Cornelia
    Caragea, Doina
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 498 - 506
  • [6] Use and Function of Evidential hashtags on Twitter
    Kotwica, Dorota
    RILCE-REVISTA DE FILOLOGIA HISPANICA, 2021, 37 (02): : 685 - 708
  • [7] Predicting Twitter Hashtags Popularity Level
    Doong, Shing H.
    PROCEEDINGS OF THE 49TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS 2016), 2016, : 1959 - 1968
  • [8] Syntactic and discursive values of Twitter hashtags
    Mancera Rueda, Ana
    Pano Alaman, Ana
    CIRCULO DE LINGUISTICA APLICADA A LA COMUNICACION, 2015, (64): : 58 - 83
  • [9] Scaling laws and dynamics of bubble coalescence
    Anthony, Christopher R.
    Kamat, Pritish M.
    Thete, Sumeet S.
    Munro, James P.
    Lister, John R.
    Harris, Michael T.
    Basaran, Osman A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (08):
  • [10] SCALING LAWS FOR SPACE CHARGE DYNAMICS
    HARRISON, ER
    BRITISH JOURNAL OF APPLIED PHYSICS, 1957, 8 (10): : 422 - 423