RECONSTRUCTING POTENTIALS FROM ZEROS OF ONE EIGENFUNCTION

被引:28
作者
Chen, Xinfu [1 ]
Cheng, Y. H. [2 ]
Law, C. K. [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
基金
美国国家科学基金会;
关键词
Inverse nodal problem; Sturm-Liouville operators; Tikhonov regularization; error bound; INVERSE NODAL PROBLEM;
D O I
10.1090/S0002-9947-2011-05258-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an inverse nodal problem, concerning the reconstruction of a potential of a Sturm-Liouville operator, by using zeros of one eigenfunction as input. We propose three methods for the reconstruction, one of which is the Tikhonov regularization method. The explicit error bounds are calculated for all three methods. In case there is measurement error, the Tikhonov regularization method is still convergent. The study is motivated by physical considerations.
引用
收藏
页码:4831 / 4851
页数:21
相关论文
共 15 条
[1]  
[Anonymous], 1996, INTRO MATH THEORY IN
[2]   OPTIMAL BOUNDS FOR RATIOS OF EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH DIRICHLET BOUNDARY-CONDITIONS AND POSITIVE POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :403-415
[3]   THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA [J].
BARNES, DC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) :732-753
[4]   L1 convergence of the reconstruction formula for the potential function [J].
Chen, YT ;
Cheng, YH ;
Law, CK ;
Tsay, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2319-2324
[5]   Remarks on a new inverse nodal problem [J].
Cheng, YH ;
Law, CK ;
Tsay, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :145-155
[6]   Inverse problems: recovery of BV coefficients from nodes [J].
Hald, OH ;
McLaughlin, JR .
INVERSE PROBLEMS, 1998, 14 (02) :245-273
[7]   SOLUTIONS OF INVERSE NODAL PROBLEMS [J].
HALD, OH ;
MCLAUGHLIN, JR .
INVERSE PROBLEMS, 1989, 5 (03) :307-347
[8]   The inverse nodal problem on the smoothness of the potential function [J].
Law, CK ;
Shen, CL ;
Yang, CF .
INVERSE PROBLEMS, 1999, 15 (01) :253-263
[9]   On the well-posedness of the inverse nodal problem [J].
Law, CK ;
Tsay, J .
INVERSE PROBLEMS, 2001, 17 (05) :1493-1512
[10]   The inverse nodal problem on the smoothness of the potential function (vol 15, pg 253, 1999) [J].
Law, CK ;
Shen, CL ;
Yang, CF .
INVERSE PROBLEMS, 2001, 17 (02) :361-363