Rayleigh-Benard convection in a cubic cell under the effects of gas radiation up to Ra=109

被引:8
|
作者
Delort-Laval, M. [1 ]
Soucasse, L. [1 ]
Riviere, Ph [1 ]
Soufiani, A. [1 ]
机构
[1] Univ Paris Saclay, Cent Supelec, CNRS, Lab EM2C, 8-10 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
关键词
Turbulent convection; Radiative transfer; Cubic Rayleigh-Benard cell; LARGE-SCALE FLOW; NATURAL-CONVECTION; HEAT-TRANSFER; TURBULENT CONVECTION; STABILITY ANALYSIS; CAVITY; BENCHMARK; SIMULATIONS; INSTABILITY; NUMBERS;
D O I
10.1016/j.ijheatmasstransfer.2021.122453
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates radiative transfer effects on Rayleigh-Benard convection in a cubic cell over a large range of Rayleigh numbers, from Ra = 10(3) (below the onset of convection) to Ra = 10(9) in the turbulent regime. Coupled direct numerical simulations are carried out for a radiating air/H2O/CO2 mixture at room temperature, using a Chebyshev spectral method for the flow and a ray-tracing method for the radiation field. For the highest Rayleigh numbers, a subgrid model is used to account for the radiation of the smallest, non-optically thin, turbulent scales. Symmetry and time-averaging (for unsteady solutions) are applied to compare coupled and uncoupled results, regardless of the multiple flow configurations that may be obtained. At low Rayleigh number, the potential energy decreases, and the onset of convection is delayed when radiation is taken into account. However, once convection settles, the potential energy increases with radiation, leading to a higher convective flux in the core and a higher kinetic energy. Specific contributions of radiative transfer to the potential energy balance and to the thermal energy balance are highlighted. It is also shown that the ratio of radiative and convective source terms in the energy balance roughly scales as Ra-1/2 and that radiative transfer effects weaken at high Rayleigh numbers. Finally, radiative transfer effects on turbulence budgets of mechanical and thermal fluctuations are analysed in the range 10(7) <= Ra <= 10(9) . The magnitude of each term of these budgets is stronger when radiation is taken into account. However, radiative dissipation has little influence on the temperature fluctuation budget. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Reduced-order modelling of radiative transfer effects on Rayleigh-Benard convection in a cubic cell
    Soucasse, Laurent
    Podvin, Berengere
    Riviere, Philippe
    Soufiani, Anouar
    JOURNAL OF FLUID MECHANICS, 2020, 898
  • [2] Turbulent convection and thermal radiation in a cuboidal Rayleigh-Benard cell with conductive plates
    Czarnota, T.
    Wagner, C.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2016, 57 : 150 - 172
  • [3] Low-order models for predicting radiative transfer effects on Rayleigh-Benard convection in a cubic cell at different Rayleigh numbers
    Soucasse, Laurent
    Podvin, Berengere
    Riviere, Philippe
    Soufiani, Anouar
    JOURNAL OF FLUID MECHANICS, 2021, 917
  • [4] Sidewall effects in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Lohse, Detlef
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2014, 741 : 1 - 27
  • [5] Statistics of thermal plumes and dissipation rates in turbulent Rayleigh-Benard convection in a cubic cell
    Vishnu, Venugopal T.
    De, Arnab Kumar
    Mishra, Pankaj Kumar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
  • [6] Effects of Rayleigh-Benard convection on spectra of viscoplastic fluids
    Yigit, Sahin
    Hasslberger, Josef
    Chakraborty, Nilanjan
    Klein, Markus
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
  • [7] Axially homogeneous Rayleigh-Benard convection in a cylindrical cell
    Schmidt, Laura E.
    Calzavarini, Enrico
    Lohse, Detlef
    Toschi, Federico
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2012, 691 : 52 - 68
  • [8] Turbulent Rayleigh-Benard convection in an annular cell
    Zhu, Xu
    Jiang, Lin-Feng
    Zhou, Quan
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2019, 869
  • [9] Thermal radiation in Rayleigh-Benard convection experiments
    Urban, P.
    Kralik, T.
    Hanzelka, P.
    Musilova, V
    Veznik, T.
    Schmoranzer, D.
    Skrbek, L.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [10] Effects of radius ratio on annular centrifugal Rayleigh-Benard convection
    Wang, Dongpu
    Jiang, Hechuan
    Liu, Shuang
    Zhu, Xiaojue
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2021, 930