Self-Supervised Robust Deep Matrix Factorization for Hyperspectral Unmixing

被引:17
|
作者
Li, Heng-Chao [1 ]
Feng, Xin-Ru [1 ]
Zhai, Dong-Hai [2 ]
Du, Qian [3 ]
Plaza, Antonio [4 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Peoples R China
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[4] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Escuela Politecn, Caceres 10071, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Sparse matrices; Matrix decomposition; Nonhomogeneous media; Gaussian noise; Adaptation models; Libraries; Deep matrix factorization; hyperspectral unmixing; self-supervised constraint; sparse noise; SPECTRAL MIXTURE ANALYSIS; FAST ALGORITHM; SPARSE NMF;
D O I
10.1109/TGRS.2021.3107151
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing is a critical step to process hyperspectral images (HSIs). Nonnegative matrix factorization (NMF) has drawn extensive attention in remotely sensed hyperspectral unmixing since it does not require prior knowledge about the pure spectral constituents (endmembers) in the scene. However, this approach is normally implemented as a single-layer procedure, which does not allow for a refinement of the obtained endmember abundances. In addition, HSIs suffer from the interference of sparse noise (besides Gaussian noise), which brings challenges when pursuing efficient hyperspectral unmixing. To address these issues, we propose a new self-supervised robust deep matrix factorization (SSRDMF) model for hyperspectral unmixing, which consists of two parts: encoder and decoder. In the encoder, a multilayer nonlinear structure is designed to directly map the observed HSI data to the corresponding abundances. The abundances are then decoded by the decoder, in which the connected weights are treated as the extracted endmembers. By modeling the sparse noise explicitly, the proposed method can reduce the effect caused by both Gaussian and sparse noise. Furthermore, a self-supervised constraint is included for exploring the spectral information, which is beneficial to further improve unmixing performance. To validate our method, we have conducted extensive experiments on both synthetic and real datasets. Our experiments reveal that our newly developed SSRDMF achieves superior unmixing performance compared to other state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Geometric Nonnegative Matrix Factorization (GNMF) for Hyperspectral Unmixing
    Yang, Shuyuan
    Zhang, Xiantong
    Yao, Yigang
    Cheng, Shiqian
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2696 - 2703
  • [32] STRUCTURED DISCRIMINATIVE NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Li, Xue
    Zhou, Jun
    Tong, Lei
    Yu, Xun
    Guo, Jianhui
    Zhao, Chunxia
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1848 - 1852
  • [33] A Novel Nonnegative Matrix Factorization Method for Hyperspectral Unmixing
    Xu, Nan
    Yang, Huadong
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [34] Curvelet Transform Domain-Based Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Xu, Xiang
    Li, Jun
    Li, Shutao
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4908 - 4924
  • [35] HYPERSPECTRAL UNMIXING ALGORITHM BASED ON NONNEGATIVE MATRIX FACTORIZATION
    Bao, Wenxing
    Li, Qin
    Xin, Liping
    Qu, Kewen
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6982 - 6985
  • [36] Hyperspectral Unmixing via Nonnegative Matrix Factorization With Handcrafted and Learned Priors
    Zhao, Min
    Gao, Tiande
    Chen, Jie
    Chen, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [37] A NOVEL APPROACH FOR HYPERSPECTRAL UNMIXING BASED ON NONNEGATIVE MATRIX FACTORIZATION
    Liu, Xuesong
    Wang, Bin
    Zhang, Liming
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1289 - 1292
  • [38] Hyperspectral Unmixing Using Sparsity-Constrained Deep Nonnegative Matrix Factorization With Total Variation
    Feng, Xin-Ru
    Li, Heng-Chao
    Li, Jun
    Du, Qian
    Plaza, Antonio
    Emery, William J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 6245 - 6257
  • [39] Nonnegative Matrix Factorization with Piecewise Smoothness Constraint for Hyperspectral Unmixing
    Jia, Sen
    Qian, Yun-Ta
    Ji, Zhen
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 815 - +
  • [40] SPATIAL GRAPH REGULARIZED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Zhang, Hao
    Lei, Lin
    Zhang, Shaoquan
    Huang, Min
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1624 - 1627