Comparison of Machine Learning Algorithms for Sentiment Classification on Fake News Detection

被引:0
|
作者
Mahmud, Yuzi [1 ]
Shaeeali, Noor Sakinah [1 ]
Mutalib, Sofianita [1 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
关键词
Data mining; fake news; sentiment classification; supervised machine learning; text mining;
D O I
10.14569/IJACSA.2021.0121072
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the wide usage of World Wide Web (WWW) and social media platforms, fake news could become rampant among the users. They tend to create and share the news without knowing the authenticity of it. This would become the most critical issues among the societies due to the dissemination of false information. In that regard, fake news needs to be detected as early as possible to avoid negative influences on people who may rely on such information while making important decisions. The aim of this paper is to develop an automation of sentiment classifier model that could help individuals, or readers to understand the sentiment of the fake news immediately. The Cross-Industry Standard Process for Data Mining (CRISP-DM) process model has been applied for the research methodology. The dataset on fake news detection were collected from Kaggle website. The dataset was trained, tested, and validated with cross-validation and sampling methods. Then, comparison model performance using four machine learning algorithms which are Wye Bayes, Logistic Regression, Support Vector Machine and Random Forest was constructed to investigate which algorithms has the most efficiency towards sentiment text classification performance. A comparison between 1000 and 2500 instances from the fake news dataset was analyzed using 200 and 500 tokens. The result showed that Random Forest (RF) achieved the highest accuracy compared to other machine learning algorithms.
引用
收藏
页码:658 / 665
页数:8
相关论文
共 50 条
  • [41] Fake news detection using supervised machine learning techniques
    Malhotra, Pooja
    Malik, Sanjay Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01): : 7 - 15
  • [42] A comprehensive survey on machine learning approaches for fake news detection
    Jawaher Alghamdi
    Suhuai Luo
    Yuqing Lin
    Multimedia Tools and Applications, 2024, 83 : 51009 - 51067
  • [43] Fake News Detection Using Machine Learning Ensemble Methods
    Ahmad, Iftikhar
    Yousaf, Muhammad
    Yousaf, Suhail
    Ahmad, Muhammad Ovais
    COMPLEXITY, 2020, 2020
  • [44] Integrating Machine Learning Techniques in Semantic Fake News Detection
    Adrian M. P. Braşoveanu
    Răzvan Andonie
    Neural Processing Letters, 2021, 53 : 3055 - 3072
  • [45] A Research on Fake News Detection Using Machine Learning Algorithm
    Shrivastava, Sagar
    Singh, Rishika
    Jain, Charu
    Kaushal, Shivangi
    SMART SYSTEMS: INNOVATIONS IN COMPUTING (SSIC 2021), 2022, 235 : 273 - 287
  • [46] A comprehensive survey on machine learning approaches for fake news detection
    Alghamdi, Jawaher
    Luo, Suhuai
    Lin, Yuqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 51009 - 51067
  • [47] A Machine Learning Technique for Detection of Social Media Fake News
    Arowolo, Micheal Olaolu
    Misra, Sanjay
    Ogundokun, Roseline Oluwaseun
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2023, 19 (01)
  • [48] Survey of machine learning techniques for Arabic fake news detection
    Touahri, Ibtissam
    Mazroui, Azzeddine
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [49] Fake news detection in Urdu language using machine learning
    Farooq, Muhammad Shoaib
    Naseem, Ansar
    Rustam, Furqan
    Ashraf, Imran
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [50] Analysis of fake news detection using machine learning technique
    Seetharaman, R.
    Tharun, M.
    Mole, S. S. Sreeja
    Anandan, K.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 2218 - 2223