Comparison of Machine Learning Algorithms for Sentiment Classification on Fake News Detection

被引:0
|
作者
Mahmud, Yuzi [1 ]
Shaeeali, Noor Sakinah [1 ]
Mutalib, Sofianita [1 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
关键词
Data mining; fake news; sentiment classification; supervised machine learning; text mining;
D O I
10.14569/IJACSA.2021.0121072
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the wide usage of World Wide Web (WWW) and social media platforms, fake news could become rampant among the users. They tend to create and share the news without knowing the authenticity of it. This would become the most critical issues among the societies due to the dissemination of false information. In that regard, fake news needs to be detected as early as possible to avoid negative influences on people who may rely on such information while making important decisions. The aim of this paper is to develop an automation of sentiment classifier model that could help individuals, or readers to understand the sentiment of the fake news immediately. The Cross-Industry Standard Process for Data Mining (CRISP-DM) process model has been applied for the research methodology. The dataset on fake news detection were collected from Kaggle website. The dataset was trained, tested, and validated with cross-validation and sampling methods. Then, comparison model performance using four machine learning algorithms which are Wye Bayes, Logistic Regression, Support Vector Machine and Random Forest was constructed to investigate which algorithms has the most efficiency towards sentiment text classification performance. A comparison between 1000 and 2500 instances from the fake news dataset was analyzed using 200 and 500 tokens. The result showed that Random Forest (RF) achieved the highest accuracy compared to other machine learning algorithms.
引用
收藏
页码:658 / 665
页数:8
相关论文
共 50 条
  • [1] Evaluating Machine Learning Algorithms for Fake News Detection
    Gilda, Shlok
    PROCEEDINGS OF THE 2017 IEEE 15TH STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2017, : 110 - 115
  • [2] An Empirical Comparison of Fake News Detection using different Machine Learning Algorithms
    Albahr, Abdulaziz
    Albahar, Marwan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 146 - 152
  • [3] An empirical comparison of fake news detection using different machine learning algorithms
    Albahr A.
    Albahar M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 146 - 152
  • [4] Detection of Turkish Fake News in Twitter with Machine Learning Algorithms
    Suleyman Gokhan Taskin
    Ecir Ugur Kucuksille
    Kamil Topal
    Arabian Journal for Science and Engineering, 2022, 47 : 2359 - 2379
  • [5] Fake News Detection Model Basing on Machine Learning Algorithms
    Taha, Mohammed A.
    Jabar, Haider D. A.
    Mohammed, Widad K.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (08) : 2771 - 2781
  • [6] Evaluating Machine Learning Algorithms For Bengali Fake News Detection
    Mugdha, Shafaya Bin Shabbir
    Ferdous, Sayeda Muntaha
    Fahmin, Ahmed
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [7] Detection of Turkish Fake News in Twitter with Machine Learning Algorithms
    Taskin, Suleyman Gokhan
    Kucuksille, Ecir Ugur
    Topal, Kamil
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 2359 - 2379
  • [8] Machine Learning Methods for Fake News Classification
    Ksieniewicz, Pawel
    Choras, Michal
    Kozik, Rafal
    Wozniak, Michal
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 332 - 339
  • [9] Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques
    Alameri, Saeed Amer
    Mohd, Masnizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 101 - 106
  • [10] Detection of Fake News Using Machine Learning and Natural Language Processing Algorithms
    Prachi, Noshin Nirvana
    Habibullah, Md.
    Rafi, Md. Emanul Haque
    Alam, Evan
    Khan, Riasat
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (06) : 652 - 661