Bifurcation analysis of the Poincare map function of intracranial EEG signals in temporal lobe epilepsy patients

被引:21
作者
Amiri, Mahmood
Davoodi-Bojd, Esmaeil
Bahrami, Fariba [2 ]
Raza, Mohsin [1 ]
机构
[1] Baqiyatallah Univ Med Sci, Chem Injuries Res Ctr, Sect Neurosci & Eth, Tehran, Iran
[2] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, CIPCE, Tehran, Iran
关键词
Poincare map; Bifurcation analysis; Epilepsy; Evolutionary algorithm; SEIZURE PREDICTION; BRAIN; DYNAMICS; CHAOS; NETWORKS; SYSTEMS; LONG;
D O I
10.1016/j.matcom.2011.03.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the Poincare map function as a one-dimensional first-return map is obtained by approximating the scatter plots of inter-peak interval (IPI) during preictal and postictal periods from invasive EEG recordings of nine patients suffering from medically intractable focal epilepsy. Evolutionary Algorithm (EA) is utilized for parameter estimation of the Poincare map. Bifurcation analyses of the iterated map reveal that as the neuronal activity progresses from preictal state toward the ictal event, the parameter values of the Poincare map move toward the bifurcation points. However, following the seizure occurrence and in the postictal period, these parameter values move away from the bifurcation points. Both flip and fold bifurcations are analyzed and it is demonstrated that in some cases the flip bifurcation and in other cases the fold bifurcation are the dynamical regime underlying epileptiform events. This information can offer insights into the dynamical nature and variability of the brain signals and consequently could help to predict and control seizure events. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2471 / 2491
页数:21
相关论文
共 37 条
[1]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[2]   Analysis of the dynamical behavior of a feedback auto-associative memory [J].
Amiri, Mahmood ;
Saeb, Sohrab ;
Yazdanpanah, Mohammad Javad ;
Seyyedsalehi, S. Ali .
NEUROCOMPUTING, 2008, 71 (4-6) :486-494
[3]   Functional modeling of astrocytes in epilepsy: a feedback system perspective [J].
Amiri, Mahmood ;
Bahrami, Fariba ;
Janahmadi, Mahyar .
NEURAL COMPUTING & APPLICATIONS, 2011, 20 (08) :1131-1139
[4]   Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks [J].
Amiri, Mahmood ;
Davande, Hamed ;
Sadeghian, Alireza ;
Chartier, Sylvain .
NEURAL NETWORKS, 2010, 23 (07) :892-904
[5]   Improved spatial characterization of the epileptic brain by focusing on nonlinearity [J].
Andrzejak, RG ;
Mormann, F ;
Widman, G ;
Kreuz, T ;
Elger, CE ;
Lehnertz, K .
EPILEPSY RESEARCH, 2006, 69 (01) :30-44
[6]   LOW-DIMENSIONAL CHAOS IN AN INSTANCE OF EPILEPSY [J].
BABLOYANTZ, A ;
DESTEXHE, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (10) :3513-3517
[7]   Enhanced EEG functional connectivity in mesial temporal lobe epilepsy [J].
Bettus, Gaelle ;
Wendling, Fabrice ;
Guye, Maxime ;
Valton, Luc ;
Regis, Jean ;
Chauvel, Patrick ;
Bartolomei, Fabrice .
EPILEPSY RESEARCH, 2008, 81 (01) :58-68
[8]   BAM Learning of Nonlinearly Separable Tasks by Using an Asymmetrical Output Function and Reinforcement Learning [J].
Chartier, Sylvain ;
Boukadoum, Mounir ;
Amiri, Mahmood .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (08) :1281-1292
[9]   Statistical assessment of nonlinear causality:: application to epileptic EEG signals [J].
Chávez, M ;
Martinerie, J ;
Le Van Quyen, M .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 124 (02) :113-128
[10]   Nonlinear-dynamical arrhythmia control in humans [J].
Christini, DJ ;
Stein, KM ;
Markowitz, SM ;
Mittal, S ;
Slotwiner, DJ ;
Scheiner, MA ;
Iwai, S ;
Lerman, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5827-5832