A sparse finite element method with high accuracy Part I

被引:16
作者
Lin, Q
Yan, NN
Zhou, AH
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
D O I
10.1007/PL00005456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop and analyze a new finite element method called the sparse finite element method for second order elliptic problems. This method involves much fewer degrees of freedom than the standard finite element method. We show nevertheless that such a sparse finite element method still possesses the superconvergence and other high accuracy properties same as those of the standard finite element method. The main technique in our analysis is the use of some integral identities.
引用
收藏
页码:731 / 742
页数:12
相关论文
共 21 条
[1]   EXTRAPOLATION, COMBINATION, AND SPARSE GRID TECHNIQUES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BUNGARTZ, H ;
GRIEBEL, M ;
RUDE, U .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :243-252
[2]  
CHEN CM, 1982, FINITE ELEMENT METHO
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
DOUGLAS J, 1974, REV FR AUTOMAT INFOR, V8, P61
[5]   SUPERCONVERGENCE FOR RECTANGULAR MIXED FINITE-ELEMENTS [J].
DURAN, R .
NUMERISCHE MATHEMATIK, 1990, 58 (03) :287-298
[6]   SUPERCONVERGENCE OF THE VELOCITY ALONG THE GAUSS LINES IN MIXED FINITE-ELEMENT METHODS [J].
EWING, RE ;
LAZAROV, RD ;
WANG, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1015-1029
[7]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[8]  
GRIEBEL M, 1992, ITERATIVE METHODS LI, P163
[9]   ON SUPERCONVERGENCE TECHNIQUES [J].
KRIZEK, M ;
NEITTAANMAKI, P .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) :175-198
[10]  
LESAINT P, 1979, RAIRO-ANAL NUMER-NUM, V13, P139