Supersonic kinks and solitons in active solids

被引:6
作者
Gorbushin, N. [1 ]
Truskinovsky, L. [1 ]
机构
[1] PSL Res Univ, ESPCI Paris, CNRS, Lab Phys & Mecan Milieux Heterogenes,PMMH UMR 763, 10 Rue Vauquelin, F-75005 Paris, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2020年 / 378卷 / 2162期
关键词
transition waves; chain model; active processes; metamaterials;
D O I
10.1098/rsta.2019.0115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To show that steadily propagating nonlinear waves in active matter can be driven internally, we develop a prototypical model of a topological kink moving with a constant supersonic speed. We use a model of a bistable mass-spring (Fermi-Pasta-Ulam) chain capable of generating active stress. In contrast to subsonic kinks in passive bi-stable chains that are necessarily dissipative, the obtained supersonic solutions are purely anti-dissipative. Our numerical experiments point towards the stability of the obtained kink-type solutions and the possibility of propagating kink-anti-kink bundles reminiscent of solitons. We show that even the simplest quasi-continuum approximation of the discrete model captures the most important features of the predicted active phenomena. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.
引用
收藏
页数:19
相关论文
共 28 条
[1]   Brittle fracture in a periodic structure with internal potential energy. Spontaneous crack propagation [J].
Ayzenberg-Stepanenko, Mark ;
Mishuris, Gennady ;
Slepyan, Leonid .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2167)
[2]   Glassy dynamics in dense systems of active particles [J].
Berthier, Ludovic ;
Flenner, Elijah ;
Szamel, Grzegorz .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (20)
[3]  
Braess D., 1968, Unternehmensforschung, V12, P258, DOI DOI 10.1007/BF01918335
[4]   PARADOXICAL BEHAVIOR OF MECHANICAL AND ELECTRICAL NETWORKS [J].
COHEN, JE ;
HOROWITZ, P .
NATURE, 1991, 352 (6337) :699-701
[5]   An introduction to the physics of active matter [J].
De Magistris, G. ;
Marenduzzo, D. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 418 :65-77
[6]   CONVECTIVE INSTABILITY BY ACTIVE STRESS [J].
FINLAYSON, BA ;
SCRIVAN, LE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 310 (1501) :183-+
[7]   The statistical physics of active matter: From self-catalytic colloids to living cells [J].
Fodor, Etienne ;
Marchetti, M. Cristina .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 :106-120
[8]  
Gallavotti G., 2007, Lecture Notes in Physics, V728
[9]   Stress Reorganization and Response in Active Solids [J].
Hawkins, Rhoda J. ;
Liverpool, Tanniemola B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[10]   Hydrodynamic theory of active matter [J].
Juelicher, Frank ;
Grill, Stephan W. ;
Salbreux, Guillaume .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)