Gaussian estimates for second order elliptic divergence operators on Lipschitz and C1 domains

被引:0
|
作者
Auscher, P [1 ]
Tchamitchian, P [1 ]
机构
[1] Univ Amiens, Fac Math & Informat, F-80039 Amiens 1, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the heat kernel of elliptic second order divergence operators defined on Lipschitz or C-1 domains subject to Dirichlet or Neumann boundary condition. Our purpose is to obtain gaussian upper bounds and Holder regularity of these kernels when we allow the coefficients to be complex. We obtain a criterion to decide on whether such estimates hold and apply it in various situations such as uniformly continuous or vmo(Omega) coefficients on C-1 domains or Lipschitz domains with small Lipschitz constant. We also prove an analyticity result for the heat kernels as functions of the coefficients. Although not treated here the strategy works for second order systems subject to Carding inequality.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 50 条
  • [31] DIRICHLET - TRANSMISSION PROBLEMS FOR GENERAL BRINKMAN OPERATORS ON LIPSCHITZ AND C1 DOMAINS IN RIEMANNIAN MANIFOLDS
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (04): : 999 - 1018
  • [32] Resolvent estimates for wave operators in Lipschitz domains
    Ammari, Kais
    Amrouche, Cherif
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [33] Resolvent estimates for wave operators in Lipschitz domains
    Kaïs Ammari
    Chérif Amrouche
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [34] Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients
    Francini, Elisa
    Vessella, Sergio
    Wang, Jenn-Nan
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (02) : 535 - 571
  • [35] Gaussian upper bounds for heat kernels of second-order elliptic operators with complex coefficients on arbitrary domains
    Ouhabaz, EM
    JOURNAL OF OPERATOR THEORY, 2004, 51 (02) : 335 - 360
  • [36] Semiclassical analysis of general second order elliptic operators on bounded domains
    Dancer, EN
    López-Gómez, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) : 3723 - 3742
  • [37] Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients
    G. Metafune
    L. Negro
    C. Spina
    Mediterranean Journal of Mathematics, 2019, 16
  • [38] On the maximum principle for second-order elliptic operators in unbounded domains
    Cafagna, V
    Vitolo, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (05) : 359 - 363
  • [39] Concave functions of second order elliptic operators, kernel estimates and applications
    Pustylnik, E
    FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 427 - 437
  • [40] Coercivity for elliptic operators and positivity of solutions on Lipschitz domains
    Robert Haller-Dintelmann
    Joachim Rehberg
    Archiv der Mathematik, 2010, 95 : 457 - 468