Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning

被引:25
作者
Coronnello, Claudia [1 ]
Francipane, Maria Giovanna [2 ,3 ]
机构
[1] Fdn RiMED, Adv Data Anal Grp, I-90133 Palermo, Italy
[2] Fdn RiMED, Regenerat Med Grp, I-90133 Palermo, Italy
[3] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15232 USA
关键词
Induced pluripotent stem cells; Regenerative medicine; Quality control; Artificial intelligence; Machine learning; Deep learning; CARDIAC-DISEASES; CLASSIFICATION;
D O I
10.1007/s12015-021-10302-y
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The advent of induced pluripotent stem cell (iPSC) technology, which allows to transform one cell type into another, holds the promise to produce therapeutic cells and organs on demand. Realization of this objective is contingent on the ability to demonstrate quality and safety of the cellular product for its intended use. Bottlenecks and backlogs to the clinical use of iPSCs have been fully outlined and a need has emerged for safer and standardized protocols to trigger cell reprogramming and functional differentiation. Amidst great challenges, in particular associated with lengthy culture time and laborious cell characterization, a demand for faster and more accurate methods for the validation of cell identity and function at different stages of the iPSC manufacturing process has risen. Artificial intelligence-based methods are proving helpful for these complex tasks and might revolutionize the way iPSCs are managed to create surrogate cells and organs. Here, we briefly review recent progress in artificial intelligence approaches for evaluation of iPSCs and their derivatives in experimental studies.
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
[1]   Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology [J].
Bardy, C. ;
van den Hurk, M. ;
Kakaradov, B. ;
Erwin, J. A. ;
Jaeger, B. N. ;
Hernandez, R. V. ;
Eames, T. ;
Paucar, A. A. ;
Gorris, M. ;
Marchand, C. ;
Jappelli, R. ;
Barron, J. ;
Bryant, A. K. ;
Kellogg, M. ;
Lasken, R. S. ;
Rutten, B. P. F. ;
Steinbusch, H. W. M. ;
Yeo, G. W. ;
Gage, F. H. .
MOLECULAR PSYCHIATRY, 2016, 21 (11) :1573-1588
[2]   Digital pathology and computational image analysis in nephropathology [J].
Barisoni, Laura ;
Lafata, Kyle J. ;
Hewitt, Stephen M. ;
Madabhushi, Anant ;
Balis, Ulysses G. J. .
NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) :669-685
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images [J].
Christiansen, Eric M. ;
Yang, Samuel J. ;
Ando, D. Michael ;
Javaherian, Ashkan ;
Skibinski, Gaia ;
Lipnick, Scott ;
Mount, Elliot ;
O'Neil, Alison ;
Shah, Kevan ;
Lee, Alicia K. ;
Goyal, Piyush ;
Fedus, William ;
Poplin, Ryan ;
Esteva, Andre ;
Berndl, Marc ;
Rubin, Lee L. ;
Nelson, Philip ;
Finkbeiner, Steven .
CELL, 2018, 173 (03) :792-+
[5]   Induced pluripotent stem cells and personalized medicine: current progress and future perspectives [J].
Chun, Yong Soon ;
Byun, Kyunghee ;
Lee, Bonghee .
ANATOMY & CELL BIOLOGY, 2011, 44 (04) :245-255
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[8]   DeepNEU: cellular reprogramming comes of age - a machine learning platform with application to rare diseases research [J].
Danter, Wayne R. .
ORPHANET JOURNAL OF RARE DISEASES, 2019, 14 (1)
[9]   A Machine Learning Assisted, Label-free, Non-invasive Approach for Somatic Reprogramming in Induced Pluripotent Stem Cell Colony Formation Detection and Prediction [J].
Fan, Ke ;
Zhang, Sheng ;
Zhang, Ying ;
Lu, Jun ;
Holcombe, Mike ;
Zhang, Xiao .
SCIENTIFIC REPORTS, 2017, 7
[10]   The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on IK1 [J].
Goversen, Birgit ;
van der Heyden, Marcel A. G. ;
van Veen, Toon A. B. ;
de Boer, Teun P. .
PHARMACOLOGY & THERAPEUTICS, 2018, 183 :127-136