Doubly periodic propagating wave for (2+1)-dimensional breaking soliton equation

被引:0
作者
Huang Wen-Hua [1 ,2 ]
Liu Yu-Lu [2 ]
Zhang Jie-Fang [3 ]
机构
[1] Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
[3] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321000, Peoples R China
关键词
breaking soliton equation; variable separation method; Jabobi elliptic function; periodic wave;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 27 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS F, V55
  • [2] BOGOYAVLENSKY OI, 1998, IZV AKAD NAUK SSSR M, V53, P907
  • [3] BOGOYAVLENSKY OI, 1998, IZV AKAD NAUK SSSR M, V53, P243
  • [4] BOGOYAVLENSKY OI, 1999, IZV AKAD NAUK SSSR M, V54, P123
  • [5] Propagating wave patterns and "peakons" of the Davey-Stewartson system
    Chow, KW
    Lou, SY
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (02) : 561 - 567
  • [6] Extended mapping approach and new solutions of the (2+1)-dimensional breaking soliton equations
    He, BG
    Xu, CZ
    Zhang, JF
    [J]. ACTA PHYSICA SINICA, 2006, 55 (02) : 511 - 516
  • [7] He HS, 2005, CHINESE PHYS, V14, P1926, DOI 10.1088/1009-1963/14/10/002
  • [8] Coherent soliton structures of the (2+1)-dimensional long-wave-short-wave resonance interaction equation
    Huang, WH
    Zhang, JF
    Sheng, ZM
    [J]. CHINESE PHYSICS, 2002, 11 (11): : 1101 - 1105
  • [9] Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa-Holm equation
    Kraenkel, RA
    Senthilvelan, M
    Zenchuk, AI
    [J]. PHYSICS LETTERS A, 2000, 273 (03) : 183 - 193
  • [10] Lai XJ, 2005, Z NATURFORSCH A, V60, P573