On isometric and conformal rigidity of submanifolds

被引:5
作者
Silva, SL [1 ]
机构
[1] Univ Estadual Rio de Janeiro, Dept Estruturas Matemat, IME, BR-20550013 Rio De Janeiro, Brazil
关键词
D O I
10.2140/pjm.2001.199.227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a new conformal invariant and we prove a conformal rigidity theorem which has no restriction on the size of the codimension. We also prove an isometric rigidity theorem whose assumptions are less restrictive than in Allendoerfer's theorem.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
[41]   Rigidity of minimal submanifolds in hyperbolic space [J].
Keomkyo Seo .
Archiv der Mathematik, 2010, 94 :173-181
[42]   Rigidity of Complete Minimal Submanifolds in Spheres [J].
Zhou, Jundong .
FRONTIERS IN PHYSICS, 2020, 8
[43]   Rigidity of Minimal Submanifolds in Space Forms [J].
Chen, Hang ;
Wei, Guofang .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) :4923-4933
[44]   Torsional rigidity of submanifolds with controlled geometry [J].
A. Hurtado ;
S. Markvorsen ;
V. Palmer .
Mathematische Annalen, 2009, 344 :511-542
[45]   Rigidity of minimal submanifolds in hyperbolic space [J].
Seo, Keomkyo .
ARCHIV DER MATHEMATIK, 2010, 94 (02) :173-181
[46]   Rigidity of compact minimal submanifolds in a sphere [J].
Deshmukh, S .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (01) :31-44
[47]   ON INTRINSIC RIGIDITY FOR MINIMAL SUBMANIFOLDS IN A SPHERE [J].
SHEN, YB .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1989, 32 (07) :769-781
[48]   Rigidity of submanifolds in the Euclidean and spherical spaces [J].
Jonatan F. da Silva ;
Henrique F. de Lima ;
Fábio R. dos Santos ;
Marco Antonio L. Velásquez .
Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 :159-165
[49]   INTRINSIC RIGIDITY FOR COMPACT MINIMAL SUBMANIFOLDS [J].
SHEN, YB .
KEXUE TONGBAO, 1988, 33 (06) :523-524
[50]   GAUSS PARAMETRIZATIONS AND RIGIDITY ASPECTS OF SUBMANIFOLDS [J].
DAJCZER, M ;
GROMOLL, D .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1985, 22 (01) :1-12