On isometric and conformal rigidity of submanifolds

被引:5
作者
Silva, SL [1 ]
机构
[1] Univ Estadual Rio de Janeiro, Dept Estruturas Matemat, IME, BR-20550013 Rio De Janeiro, Brazil
关键词
D O I
10.2140/pjm.2001.199.227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a new conformal invariant and we prove a conformal rigidity theorem which has no restriction on the size of the codimension. We also prove an isometric rigidity theorem whose assumptions are less restrictive than in Allendoerfer's theorem.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
[21]   Submanifolds of a Conformal Sasakian Manifold [J].
Abedi, Esmaiel ;
Ilmakchi, Mohammad .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (01) :23-34
[22]   GLOBAL CONFORMAL INVARIANTS OF SUBMANIFOLDS [J].
Mondino, Andrea ;
Nguyen, Huy T. .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (06) :2663-2695
[23]   Conformal Kaehler Euclidean submanifolds [J].
de Carvalho, A. ;
Chion, S. ;
Dajczer, M. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
[24]   Conformal infinitesimal variations of submanifolds [J].
Dajczer, Marcos ;
Jimenez, Miguel Ibieta .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 75
[25]   Affine Isometric Embeddings and Rigidity [J].
Thomas Ivey .
Geometriae Dedicata, 1997, 64 :125-144
[26]   RIGIDITY FOR ELLIPTIC ISOMETRIC IMBEDDINGS [J].
TANAKA, N .
NAGOYA MATHEMATICAL JOURNAL, 1973, 51 (SEP) :137-160
[27]   Affine isometric embeddings and rigidity [J].
Ivey, T .
GEOMETRIAE DEDICATA, 1997, 64 (02) :125-144
[28]   Rigidity and flexibility of isometric extensions [J].
Cao, Wentao ;
Inauen, Dominik .
COMMENTARII MATHEMATICI HELVETICI, 2024, 99 (01) :39-80
[29]   ON EXISTENCE AND RIGIDITY OF ISOMETRIC IMMERSIONS [J].
SZCZARBA, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (04) :783-&
[30]   Rigidity of Minimal Submanifolds in Space Forms [J].
Hang Chen ;
Guofang Wei .
The Journal of Geometric Analysis, 2021, 31 :4923-4933