On isometric and conformal rigidity of submanifolds

被引:5
作者
Silva, SL [1 ]
机构
[1] Univ Estadual Rio de Janeiro, Dept Estruturas Matemat, IME, BR-20550013 Rio De Janeiro, Brazil
关键词
D O I
10.2140/pjm.2001.199.227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a new conformal invariant and we prove a conformal rigidity theorem which has no restriction on the size of the codimension. We also prove an isometric rigidity theorem whose assumptions are less restrictive than in Allendoerfer's theorem.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
[11]   ON THE INFINITESIMAL ISOMETRIC DEFORMATIONS OF SUBMANIFOLDS [J].
程新跃 ;
杨文茂 .
Acta Mathematica Scientia, 1997, (04) :392-404
[12]   Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere [J].
Deng-Yun Yang ;
Hai-Ping Fu ;
Jin-Guo Zhang .
Archiv der Mathematik, 2023, 121 :329-342
[13]   Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere [J].
Yang, Deng-Yun ;
Fu, Hai-Ping ;
Zhang, Jin-Guo .
ARCHIV DER MATHEMATIK, 2023, 121 (03) :329-342
[14]   RIGIDITY OF REAL KAEHLER SUBMANIFOLDS [J].
DAJCZER, M ;
RODRIGUEZ, L .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :211-220
[15]   CURVATURE AND RIGIDITY OF WILLMORE SUBMANIFOLDS [J].
Shu, Shichang .
TSUKUBA JOURNAL OF MATHEMATICS, 2007, 31 (01) :175-196
[16]   Torsional rigidity of minimal submanifolds [J].
Markvorsen, Steen ;
Palmer, Vicente .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 93 :253-272
[17]   INFINITESIMAL RIGIDITY OF EUCLIDEAN SUBMANIFOLDS [J].
DAJCZER, M ;
RODRIGUEZ, L .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (04) :939-949
[18]   Rigidity and uniruling for Lagrangian submanifolds [J].
Biran, Paul ;
Cornea, Octav .
GEOMETRY & TOPOLOGY, 2009, 13 :2881-2989
[19]   Rigidity around Poisson submanifolds [J].
Marcut, Ioan .
ACTA MATHEMATICA, 2014, 213 (01) :137-198
[20]   ISOMETRIC AND CONFORMAL CONNECTIONS [J].
HUBER, A .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (03) :319-331