Pointwise approximation with quasi-interpolation by radial basis functions

被引:22
作者
Buhmann, Martin D. [1 ]
Dai, Feng [2 ]
机构
[1] Justus Liebig Univ, Math Inst, D-35392 Giessen, Germany
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasi-interpolation; Radial basis functions; Convergence estimates; WEIGHTED SOBOLEV SPACES; ORDER;
D O I
10.1016/j.jat.2014.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider radial basis function approximations using at first a localization of the basis functions known as quasi-interpolation (to be contrasted to the plain linear combinations of shifts of radial basis functions or for instance cardinal interpolation). Using these quasi-interpolants we derive various pointwise error estimates in L-P for p is an element of [1, infinity). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 192
页数:37
相关论文
共 30 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] [Anonymous], APPROXIMATION THEORY
  • [3] [Anonymous], SIAM J MATH ANAL
  • [4] [Anonymous], RADIAL BASIS FUNCTIO
  • [5] [Anonymous], 2008, GRADUATE TEXTS MATH
  • [6] [Anonymous], 1982, The Theory of Generalized Functions
  • [7] [Anonymous], 1997, Mathematical Surveys and Monographs
  • [8] Bojarski B, 2002, INDIANA U MATH J, V51, P507
  • [9] Brenner S., 2007, The Mathematical Theory of Finite Element Methods
  • [10] ON QUASI-INTERPOLATION WITH RADIAL BASIS FUNCTIONS
    BUHMANN, MD
    [J]. JOURNAL OF APPROXIMATION THEORY, 1993, 72 (01) : 103 - 130