Fermions, gauge theories, and the Sinc function representation for Feynman diagrams

被引:1
作者
Petrov, D [1 ]
Easther, R
Guralnik, G
Hahn, S
Wang, WM
机构
[1] Brown Univ, Dept Phys, Providence, RI 02912 USA
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Univ Penn, Wharton Sch, Dept Finance, Philadelphia, PA 19104 USA
关键词
D O I
10.1103/PhysRevD.63.105001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spin-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sine function representation for scalar field Feynman integrals are shared by fields with nonzero spin. We then investigate the application of the Sine function representation to simple QED diagrams, including first order corrections to the propagators and the vertex.
引用
收藏
页数:9
相关论文
共 11 条
[1]   Fast evaluation of Feynman diagrams [J].
Easther, R ;
Guralnik, G ;
Hahn, S .
PHYSICAL REVIEW D, 2000, 61 (12)
[2]  
EASTHER R, IN PRESS PHYS REV D
[3]   New numerical methods for quantum field theories on the continuum [J].
Emirdag, P ;
Easther, R ;
Guralnik, GS ;
Hahn, SC .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 :938-940
[4]  
GARCFIA S, HEPTH9612079
[5]  
GARCIA S, 1994, PHYS LETT B, V333, P119
[6]  
HAHN SC, 1998, THESIS BROWN U
[7]   5 SHORT STORIES ABOUT THE CARDINAL SERIES [J].
HIGGINS, JR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :45-89
[8]   The Source Galerkin method for scalar field theory [J].
Lawson, JW ;
Guralnik, GS .
NUCLEAR PHYSICS B, 1996, 459 (03) :589-611
[9]  
Peskin M. E., 1995, INTRO QUANTUM FIELD
[10]  
Stenger F., 1993, NUMERICAL METHODS BA