Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions

被引:18
作者
Arnold, Julian [1 ]
Schafer, Frank [1 ,2 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] MIT, CSAIL, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
QUANTUM SIMULATION; MODEL; ENTANGLEMENT; STATES;
D O I
10.1103/PhysRevX.12.031044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Identifying phase transitions and classifying phases of matter is central to understanding the properties and behavior of a broad range of material systems. In recent years, machine-learning (ML) techniques have been successfully applied to perform such tasks in a data-driven manner. However, the success of this approach notwithstanding, we still lack a clear understanding of ML methods for detecting phase transitions, particularly of those that utilize neural networks (NNs). In this work, we derive analytical expressions for the optimal output of three widely used NN-based methods for detecting phase transitions. These optimal predictions correspond to the results obtained in the limit of high model capacity. Therefore, in practice, they can, for example, be recovered using sufficiently large, well-trained NNs. The inner workings of the considered methods are revealed through the explicit dependence of the optimal output on the input data. By evaluating the analytical expressions, we can identify phase transitions directly from experimentally accessible data without training NNs, which makes this procedure favorable in terms of computation time. Our theoretical results are supported by extensive numerical simulations covering, e.g., topological, quantum, and many-body localization phase transitions. We expect similar analyses to provide a deeper understanding of other classification tasks in condensed matter physics.
引用
收藏
页数:39
相关论文
共 149 条
[1]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[2]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[3]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[4]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[5]  
[Anonymous], 2008, Quantum Magnetism.
[6]  
[Anonymous], 1996, Stochastic Modelling and Applied Probability
[7]  
Arnold J., REPLACING NEURAL NET
[8]   Interpretable and unsupervised phase classification [J].
Arnold, Julian ;
Schaefer, Frank ;
Zonda, Martin ;
Lode, Axel U. J. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[9]   Parallel quantum simulation of large systems on small NISQ computers [J].
Barratt, F. ;
Dborin, James ;
Bal, Matthias ;
Stojevic, Vid ;
Pollmann, Frank ;
Green, A. G. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[10]  
Baydin AG, 2018, J MACH LEARN RES, V18