Identification methods for Hammerstein nonlinear systems

被引:290
作者
Ding, Feng [1 ,2 ]
Liu, Xiaoping Peter [3 ]
Liu, Guangjun [4 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[3] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[4] Ryerson Univ, Dept Aerosp Engn, Toronto, ON M5B 2K3, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Recursive identification; Parameter estimation; Stochastic gradient; Least squares; Projection algorithm; Newton iterations; Hammerstein models; Wiener models; DUAL-RATE SYSTEMS; LEAST-SQUARES IDENTIFICATION; MAXIMUM-LIKELIHOOD IDENTIFICATION; STOCHASTIC GRADIENT ALGORITHMS; NONSTATIONARY ARMA PROCESSES; SYLVESTER MATRIX EQUATIONS; FINITE MEASUREMENT DATA; SELF-TUNING CONTROL; ARX-LIKE SYSTEMS; AUXILIARY MODEL;
D O I
10.1016/j.dsp.2010.06.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the identification problems of the Hammerstein nonlinear systems. A projection and a stochastic gradient (SG) identification algorithms are presented for the Hammerstein nonlinear systems by using the gradient search method. Since the projection algorithm is sensitive to noise and the SG algorithm has a slow convergence rate, a Newton recursive and a Newton iterative identification algorithms are derived by using the Newton method (Newton-Raphson method), in order to reduce the sensitivity of the projection algorithm to noise, and to improve convergence rates of the SG algorithm. Furthermore, the performances of these approaches are analyzed and compared using a numerical example, including the parameter estimation errors, the stationarity and convergence rates of parameter estimates and the computational efficiency. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 238
页数:24
相关论文
共 104 条
[1]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[2]   Convergence of the iterative Hammerstein system identification algorithm [J].
Bai, EW ;
Li, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :1929-1940
[3]   A blind approach to the Hammerstein-Wiener model identification [J].
Bai, EW .
AUTOMATICA, 2002, 38 (06) :967-979
[4]   Identification of linear systems with hard input nonlinearities of known structure [J].
Bai, EW .
AUTOMATICA, 2002, 38 (05) :853-860
[5]   A blind approach to Hammerstein model identification [J].
Bai, EW ;
Fu, MY .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) :1610-1619
[6]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[7]   Linear and non-linear system identification using separable least-squares [J].
Bruls, J ;
Chou, CT ;
Haverkamp, BRJ ;
Verhaegen, M .
EUROPEAN JOURNAL OF CONTROL, 1999, 5 (01) :116-128
[8]   Parmeter bounds for discrete-time Hammerstein models with bounded output errors [J].
Cerone, V ;
Regruto, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) :1855-1860
[9]   NONITERATIVE METHOD FOR IDENTIFICATION USING HAMMERSTEIN MODEL [J].
CHANG, FHI ;
LUUS, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :464-+
[10]   Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block [J].
Chen, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) :1612-1617