Existence of a periodic solution for some partial functional differential equations with infinite delay

被引:31
作者
Benkhalti, R [1 ]
Bouzahir, H
Ezzinbi, K
机构
[1] Pacific Lutheran Univ, Dept Math, Tacoma, WA 98447 USA
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech 40000, Morocco
关键词
D O I
10.1006/jmaa.2000.7321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of periodic solutions for some partial functional differential equations with infinite delay. We suppose that the linear part is nondensely defined and satisfies the Hille-Yosida condition. In the nonlinear case we give several criteria to ensure the existence of a periodic solution. In the nonhomogeneous linear case, we prove the existence of a periodic solution under the existence of a bounded solution. (C) 2001 Academic Press.
引用
收藏
页码:257 / 280
页数:24
相关论文
共 24 条
[1]  
ADIMY M, IN PRESS J NONLINEAR
[2]  
ADIMY M, 1998, DYN SYSTEMS APPL, V7, P389
[3]  
[Anonymous], 1974, FUNKC EKVACIOJ-SER I
[4]  
[Anonymous], 1992, SEMIGROUPS LINEAR OP
[5]  
BOUZAHIR H, 2000, AM MATH SOC, V20
[6]  
BUSENBERG S, 1992, DIFFERENTIAL INTEGRA, V5, P509
[7]  
Hale J. K., 1978, FUNKC EKVACIOJ-SER I, V21, P11
[8]  
Henriquez H.R., 1994, FUNKC EKVACIOJ-SER I, V37, P329
[9]  
Henriquez HR, 1996, INDIAN J PURE AP MAT, V27, P357
[10]   Regularity of solutions of abstract retarded functional differential equations with unbounded delay [J].
Henriquez, HR .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :513-531