A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case

被引:21
作者
Cheng, Hao [1 ]
Feng, Xiao-Li [1 ]
Fu, Chu-Li [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Cauchy problem of an elliptic equation; ill-posed problem; mollification method; error estimates; LAPLACE-EQUATION;
D O I
10.1080/17415977.2010.492519
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we consider a Cauchy problem of an elliptic equation in a multidimensional case. This problem is severely ill-posed: the solution (if it exists) does not depend continuously on the data. To deal with this problem, we propose a mollification method. Error estimates show that the regularized solution depends continuously on the data. Numerical examples verify that the proposed regularization strategy is effective and numerical calculation is stable in the multi-dimensional case.
引用
收藏
页码:971 / 982
页数:12
相关论文
共 15 条
[2]  
Ang DD., 1998, ACTA MATH VIETNAM, V23, P65
[3]  
[Anonymous], 1977, NEW YORK
[4]   Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation [J].
Bourgeois, L .
INVERSE PROBLEMS, 2006, 22 (02) :413-430
[5]  
Colli-Franzone P., 1980, CALCOLO, V16, P459
[6]   Fourier regularization method for solving a Cauchy problem for the Laplace equation [J].
Fu, C. -L. ;
Li, H. -F. ;
Qian, Z. ;
Xiong, X. -T. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2008, 16 (02) :159-169
[7]   FUNKTIONENTHEORETISCHE BESTIMMUNG DES AUSSENFELDES ZU EINER ZWEIDIMENSIONALEN MAGNETOHYDROSTATISCHEN KONFIGURATION [J].
GORENFLO, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1965, 16 (02) :279-&
[8]  
Hadamard J., 1953, PHYS TODAY, V6, P18, DOI [10.1063/1.3061337, DOI 10.1063/1.3061337]
[9]   Stability results for a Cauchy problem for an elliptic equation [J].
Hao, Dinh Nho ;
Hien, Pham Minh ;
Sahli, H. .
INVERSE PROBLEMS, 2007, 23 (01) :421-461
[10]   Backus-Gilbert algorithm for the Cauchy problem of the Laplace equation [J].
Hon, YC ;
Wei, T .
INVERSE PROBLEMS, 2001, 17 (02) :261-271