Reaction mechanism in non-thermal plasma enabled methane conversion: correlation between optical emission spectroscopy and gaseous products

被引:22
作者
Bai, Han [1 ,2 ]
Huang, Bangdou [1 ]
Liu, Yadi [1 ]
Zhang, Cheng [1 ,2 ]
Shao, Tao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing Int S&T Cooperat Base Plasma Sci & Energy, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
optical emission spectroscopy; methane conversion; nanosecond pulsed discharge; microwave plasma; COLLISION PROCESSES; HYDROGEN-PRODUCTION; DRY; HYDROCARBONS; DISCHARGES; ELECTRONS; ETHYLENE; CH4;
D O I
10.1088/1361-6463/ac15d3
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the reaction mechanism in non-thermal plasma enabled methane conversion driven by different sources, i.e. microwave discharge, nanosecond pulsed dielectric barrier discharge, and spark discharge, is investigated. The behaviour of reactive species is monitored using the optical emission spectroscopy (OES), while the final gaseous products are analysed with gas-chromatograph. A zero-dimensional (0D) reaction kinetics model is established to reveal the underlying reaction processes. By changing pressure, different plasma modes (diffuse and filamentary) are achieved and the relative emission intensity of different species and distribution of gaseous productions are manipulated. It is found that there is a strong correlation between the intensity-ratio of C-2 A -> X and CH A -> X, gas temperature, and the relative concentration of C-2 products in different discharge forms, i.e. higher intensity ratio of C-2/CH is associated with higher gas temperature and more unsaturated hydrocarbon products. Assisted with the 0D reaction kinetics model, the relationship between the intermediate species and final products is illustrated. Based on the investigation in this work, it is proposed that intensity ratio of OES can be widely adapted as a non-intrusive and real-time process monitoring in the plasma-enabled methane conversion.
引用
收藏
页数:17
相关论文
共 55 条
[1]   Hydrogen production by methane decomposition: A review [J].
Abbas, Hazzim F. ;
Daud, W. M. A. Wan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1160-1190
[2]   The 2017 Plasma Roadmap: Low temperature plasma science and technology [J].
Adamovich, I. ;
Baalrud, S. D. ;
Bogaerts, A. ;
Bruggeman, P. J. ;
Cappelli, M. ;
Colombo, V. ;
Czarnetzki, U. ;
Ebert, U. ;
Eden, J. G. ;
Favia, P. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hieftje, G. ;
Hori, M. ;
Kaganovich, I. D. ;
Kortshagen, U. ;
Kushner, M. J. ;
Mason, N. J. ;
Mazouffre, S. ;
Thagard, S. Mededovic ;
Metelmann, H-R ;
Mizuno, A. ;
Moreau, E. ;
Murphy, A. B. ;
Niemira, B. A. ;
Oehrlein, G. S. ;
Petrovic, Z. Lj ;
Pitchford, L. C. ;
Pu, Y-K ;
Rauf, S. ;
Sakai, O. ;
Samukawa, S. ;
Starikovskaia, S. ;
Tennyson, J. ;
Terashima, K. ;
Turner, M. M. ;
van de Sanden, M. C. M. ;
Vardelle, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
[3]   Chemical kinetics of an argon/methane plasma in a hydrogen reforming reactor [J].
Barni, R. ;
Benocci, R. ;
Broggi, C. ;
Riccardi, C. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2006, 35 (02) :135-143
[4]   Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion [J].
Bo, Zheng ;
Yan, Jianhua ;
Li, Xiaodong ;
Chi, Yong ;
Cen, Kefa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5545-5553
[5]   The 2020 plasma catalysis roadmap [J].
Bogaerts, Annemie ;
Tu, Xin ;
Whitehead, J. Christopher ;
Centi, Gabriele ;
Lefferts, Leon ;
Guaitella, Olivier ;
Azzolina-Jury, Federico ;
Kim, Hyun-Ha ;
Murphy, Anthony B. ;
Schneider, William F. ;
Nozaki, Tomohiro ;
Hicks, Jason C. ;
Rousseau, Antoine ;
Thevenet, Frederic ;
Khacef, Ahmed ;
Carreon, Maria .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (44)
[6]   A promising plasma-catalytic approach towards single-step methane conversion to oxygenates at room temperature [J].
Chawdhury, Piu ;
Wang, Yaolin ;
Ray, Debjyoti ;
Mathieu, Stephanie ;
Wang, Ni ;
Harding, Jonathan ;
Bin, Feng ;
Tu, Xin ;
Subrahmanyam, Ch .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
[7]   Temperature-independent, nonoxidative methane conversion in nanosecond repetitively pulsed DBD plasma [J].
Chen, Xiaoxiao ;
Zhang, Shuai ;
Li, Shi ;
Zhang, Cheng ;
Pan, Jie ;
Murphy, Anthony B. ;
Shao, Tao .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) :787-800
[8]   Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects [J].
Chung, Wei-Chieh ;
Chang, Moo-Been .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 :13-31
[9]   Plasma generation and plasma sources [J].
Conrads, H ;
Schmidt, M .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (04) :441-454
[10]   Low energy cost conversion of methane to ethylene in a hybrid plasma-catalytic reactor system [J].
Delikonstantis, Evangelos ;
Scapinello, Marco ;
Stefanidis, Georgios D. .
FUEL PROCESSING TECHNOLOGY, 2018, 176 :33-42