On the existence of maximal subrings in commutative noetherian rings

被引:6
作者
Azarang, A. [1 ]
机构
[1] Chamran Univ, Dept Math, Ahvaz, Iran
关键词
Maximal subring; commutative rings; Noetherian; EXTENSIONS; CLASSIFICATION; FINITENESS; MODULES; FIELDS; FIP;
D O I
10.1142/S021949881450073X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we generalize the results of [Submaximal integral domains, Taiwanese J. Math. 17(4) (2013) 1395-1412; Which fields have no maximal subrings? Rend. Sem. Mat. Univ. Padova 126 (2011) 213-228; On the existence of maximal subrings in commutative artinian rings, J. Algebra Appl. 9(5) (2010) 771-778; On maximal subrings of commutative rings, Algebra Colloq. 19(Spec 1) (2012) 1125-1138] for the existence of maximal subrings in a commutative noetherian ring. First, we show that for determining when an infinite noetherian ring R has a maximal subring, it suffices to assume that R is an integral domain with vertical bar R/I vertical bar < vertical bar R vertical bar for each nonzero ideal I of R. We determine when the latter integral domains have maximal subrings. In particular, we show that every uncountable noetherian ring has a maximal subring.
引用
收藏
页数:10
相关论文
共 50 条
[31]   On Commutative Clean Rings and pm Rings [J].
Burgess, W. D. ;
Raphael, R. .
RINGS, MODULES AND REPRESENTATIONS, 2009, 480 :35-+
[32]   Subrings of polynomial rings and the conjectures of Eisenbud and Evans [J].
Banerjee, Sourjya .
JOURNAL OF ALGEBRA, 2024, 641 :85-104
[33]   Envelopes of commutative rings [J].
Parra, Rafael ;
Saorin, Manuel .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (03) :561-580
[34]   COMMUTATIVE TALL RINGS [J].
Penk, Tomas ;
Zemlicka, Jan .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
[35]   On semivalues on commutative rings [J].
Bernardes, Nilson C., Jr. ;
Pombo, Dinamerico P., Jr. .
PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (02) :245-249
[36]   On semivalues on commutative rings [J].
Nilson C. Bernardes ;
Dinamérico P. Pombo .
Periodica Mathematica Hungarica, 2017, 74 :245-249
[37]   Prime Ideals in Noetherian Rings: A Survey [J].
Wiegand, Roger ;
Wiegand, Sylvia .
RING AND MODULE THEORY, 2010, :175-193
[38]   A NOTE ON w-NOETHERIAN RINGS [J].
Xing, Shiqi ;
Wang, Fanggui .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) :541-548
[39]   Uniformly S-Noetherian rings [J].
Chen, Mingzhao ;
Kim, Hwankoo ;
Qi, Wei ;
Wang, Fanggui ;
Zhao, Wei .
QUAESTIONES MATHEMATICAE, 2024, 47 (05) :1019-1038
[40]   Symmetric radicals over Noetherian rings [J].
Kosler, KA .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2001, 7 (01) :35-48